1
|
Hou X, Mao L, Zhang X, Wang X, Wang L, Wang J. Synthesis of dolutegravir derivatives modified by 1,2,3-triazole structure and their anti-inflammatory activity in LPS-induced BV2 cells. Bioorg Med Chem Lett 2024; 117:130076. [PMID: 39694340 DOI: 10.1016/j.bmcl.2024.130076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Given the promising anti-inflammatory activity of the HIV integrase inhibitor dolutegravir and the widespread use of the 1,2,3-triazole structure in anti-inflammatory drug development, this study aimed to enhance dolutegravir's efficacy by introducing a 1,2,3-triazole group. As a result, four series of dolutegravir derivatives were synthesized. Screening these derivatives for anti-inflammatory activity in microglial cells revealed that compound 6k demonstrated the most potent anti-inflammatory effect without significant cytotoxicity. Specifically, 6k significantly reduced the transcription levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Additionally, 6k decreased the LPS-induced overproduction of inflammatory mediators such as nitric oxide (NO), IL-6, and TNF-α. Further investigation into the upstream inflammatory enzymes iNOS and COX-2 showed that 6k markedly reduced their transcription and protein levels. To elucidate the mechanism underlying the anti-inflammatory effects of dolutegravir derivatives, it was found that compound 6k modulates microglial inflammation by inhibiting the phosphorylation and nuclear translocation of signal transducer and activator of transcription 1/3 (STAT1/3). Moreover, acute toxicity testing in mice indicated that compound 6k exhibited low toxicity, suggesting its potential as a lead compound for the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Xixi Hou
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China; Department of Pharmacy, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, PR China
| | - Longfei Mao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471000, PR China.
| | - Xuanwei Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471000, PR China
| | - Xi Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Lan Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan 471000, PR China
| | - Jianji Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
2
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
3
|
Guo JM, Li LX, Li XY, Wang TY, Zhu EN, Wu AJ, Li SR, Yang H, Liu YP, Fu YH. 2-Arylbenzofurans from the stems and leaves of Artocarpus tonkinensis and their potential antiproliferative activities. Nat Prod Res 2024:1-8. [PMID: 39267311 DOI: 10.1080/14786419.2024.2402462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Phytochemical study on the stems and leaves of Artocarpus tonkinensis led to the isolation of a new 2-arylbenzofuran, artocartone (1), as well as seven known 2-arylbenzofurans (2-8). The chemical structure of 1 was established by means of comprehensive spectroscopic analyses and the known compounds were determined by comparing their MS and NMR data with those reported data in literature. The antiproliferative activities of all isolates 1-8 against five human cancer cell lines: HL-60, SMMC-7721, A-375, MCF-7 and SW480 in vitro were evaluated. As a result, compounds 1- 8 displayed notable antiproliferative activities against various human cancer cell lines with IC50 values in the range of 0.28 ± 0.05-26.89 ± 0.18 μM.
Collapse
Affiliation(s)
- Jia-Ming Guo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Lin-Xuan Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Xin-Yi Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Tian-Yu Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - En-Ning Zhu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - An-Jiao Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Shu-Ri Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Hui- Yang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
| | - Yan-Ping Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, P. R. China
| | - Yan-Hui Fu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Research and Development of Tropical Fruit and Vegetable of Haikou City, Hainan Normal University, Haikou, P. R. China
- Engineering Research Center for Industrialization of Southern Medicinal Plants Resources of Hainan Province, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P. R. China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Hainan Normal University, Haikou, P. R. China
| |
Collapse
|
4
|
Loganathan V, Ahamed A, Radhakrishnan S, Z. Gaafar AR, Gurusamy R, Akbar I. Synthesis of anthraquinone-connected coumarin derivatives via grindstone method and their evaluation of antibacterial, antioxidant, tyrosinase inhibitory activities with molecular docking, and DFT calculation studies. Heliyon 2024; 10:e25168. [PMID: 38356501 PMCID: PMC10864903 DOI: 10.1016/j.heliyon.2024.e25168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Anthraquinones and coumarins have excellent pharmacological activities and are an important class of natural plant metabolites with various biological activities. In this study, anthraquinone-9,10-dione and coumarin derivatives were combined to develop a novel anthraquinone-connected coumarin-derivative sequence. The synthesised novel anthraquinone-connected coumarin derivatives (1a-t) were screened for in vitro antibacterial, antioxidant, and tyrosinase inhibitory activities. The antibacterial activities of the synthesised compounds (1a-t) were tested against both gram-positive and gram-negative bacteria. Specifically, compound 1t was more active against E. aerogenes than ciprofloxacin. With regard to antioxidant activity, compound 1o (50.68 % at 100 μg/mL) was highly active compared to the other compounds, whereas it was less active than the standard BHT (76.74 % at 100 μg/mL). In terms of compound 1r (9.31 ± 0.45 μg/mL) was highly active against tyrosinase inhibitory activity compared with kojic acid (10.42 ± 0.98 μg/mL). In the molecular docking study, compound 1r had a higher docking score (-8.8 kcal mol-1) than kojic acid (-1.7 kcal mol-1). DFT calculations were performed to determine the energy gap of highly active compound 1r (ΔE = 0.11) and weakly active compound 1a (ΔE = 0.12). In this study, we found that every molecule displayed significant antibacterial, antioxidant, and tyrosinase inhibitory properties. Based on these reports, compounds 1r and 1t may act as multi-target agents.
Collapse
Affiliation(s)
- Velmurugan Loganathan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, 621007, India
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Surendrakumar Radhakrishnan
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, 621007, India
| | - Abdel-Rhman Z. Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Raman Gurusamy
- Department of Life Sciences, Yeungnam University, Gyeongsan, 38541, Gyeongsan-buk, South Korea
| | - Idhayadhulla Akbar
- Research Department of Chemistry, Nehru Memorial College (Affiliated Bharathidasan University), Puthanampatti, Tamil Nadu, 621007, India
| |
Collapse
|
5
|
Recent advances on biologically active coumarin-based hybrid compounds. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Sharapov AD, Fatykhov RF, Khalymbadzha IA, Zyryanov GV, Chupakhin ON, Tsurkan MV. Plant Coumarins with Anti-HIV Activity: Isolation and Mechanisms of Action. Int J Mol Sci 2023; 24:2839. [PMID: 36769163 PMCID: PMC9917851 DOI: 10.3390/ijms24032839] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
This review summarizes and systematizes the literature on the anti-HIV activity of plant coumarins with emphasis on isolation and the mechanism of their antiviral action. This review summarizes the information on the anti-HIV properties of simple coumarins as well as annulated furano- and pyranocoumarins and shows that coumarins of plant origin can act by several mechanisms: inhibition of HIV reverse transcriptase and integrase, inhibition of cellular factors that regulate HIV-1 replication, and transmission of viral particles from infected macrophages to healthy ones. It is important to note that some pyranocoumarins are able to act through several mechanisms or bind to several sites, which ensures the resistance of these compounds to HIV mutations. Here we review the last two decades of research on the anti-HIV activity of naturally occurring coumarins.
Collapse
Affiliation(s)
- Ainur D. Sharapov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Ramil F. Fatykhov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Igor A. Khalymbadzha
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, 620002 Yekaterinburg, Russia
| | | |
Collapse
|
7
|
Sustainable synthesis of benzopyran derivatives catalyzed by MgO nanoparticles: Spectral, DFT and TEM analysis. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
8
|
Shi J, Yang Y, Zhou X, Zhao L, Li X, Yusuf A, Hosseini MSMZ, Sefidkon F, Hu X. The current status of old traditional medicine introduced from Persia to China. Front Pharmacol 2022; 13:953352. [PMID: 36188609 PMCID: PMC9515588 DOI: 10.3389/fphar.2022.953352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional Chinese medicine (TCM) includes over ten thousand herbal medicines, some of which were introduced from outside countries and territories. The Silk Road enabled the exchange of merchandise such as teas, silks, carpets, and medicines between the East and West of the Eurasia continent. During this time, the ‘Compendium of Materia Medica’ (CMM) was composed by a traditional medicine practitioner, Shizhen Li (1,518–1,593) of the Ming Dynasty. This epoch-making masterpiece collected knowledge of traditional medical materials and treatments in China from the 16th century and before in utmost detail, including the origin where a material was obtained. Of 1892 medical materials from the CMM, 46 came from Persia (now Iran). In this study, the basic information of these 46 materials, including the time of introduction, the medicinal value in TCM theory, together with the current status of these medicines in China and Iran, are summarized. It is found that 20 herbs and four stones out of the 46 materials are registered as medicinal materials in the latest China Pharmacopoeia. Now most of these herbs and stones are distributed in China or replacements are available but saffron, ferula, myrrh, and olibanum are still highly dependent on imports. This study may contribute to the further development, exchange, and internationalization of traditional medicine of various backgrounds in the world, given the barriers of transportation and language are largely eased in nowadays.
Collapse
Affiliation(s)
- Jinmin Shi
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yifan Yang
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Zhou
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Lijun Zhao
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohua Li
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | - Abdullah Yusuf
- College of Chemistry and Environmental Science, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry. Kashi University, Kashgar, China
| | - Mohaddeseh S. M. Z. Hosseini
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
| | | | - Xuebo Hu
- College of Plant Science and Technology, Innovation Academy of International Traditional Chinese Medicinal Materials, National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Medicinal Plant Engineering Research Center of Hubei Province, Institute for Medicinal Plants, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xuebo Hu,
| |
Collapse
|
9
|
Kang D, Urhan Ç, Wei F, Frutos-Beltrán E, Sun L, Álvarez M, Feng D, Tao Y, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Discovery, optimization, and target identification of novel coumarin derivatives as HIV-1 reverse transcriptase-associated ribonuclease H inhibitors. Eur J Med Chem 2021; 225:113769. [PMID: 34403976 DOI: 10.1016/j.ejmech.2021.113769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022]
Abstract
Despite significant advances in antiretroviral therapy, acquired immunodeficiency syndrome remains as one of the leading causes of death worldwide. New antiretroviral drugs combined with updated treatment strategies are needed to improve convenience, tolerability, safety, and antiviral efficacy of available therapies. In this work, a focused library of coumarin derivatives was exploited by cell phenotypic screening to discover novel inhibitors of HIV-1 replication. Five compounds (DW-3, DW-4, DW-11, DW-25 and DW-31) showed moderate activity against wild-type and drug-resistant strains of HIV-1 (IIIB and RES056). Four of those molecules were identified as inhibitors of the viral RT-associated RNase H. Structural modification of the most potent DW-3 and DW-4 led to the discovery of compound 8a. This molecule showed increased potency against wild-type HIV-1 strain (EC50 = 3.94 ± 0.22 μM) and retained activity against a panel of mutant strains, showing EC50 values ranging from 5.62 μM to 202 μM. In enzymatic assays, 8a was found to inhibit the viral RNase H with an IC50 of 12.3 μM. Molecular docking studies revealed that 8a could adopt a binding mode similar to that previously reported for other active site HIV-1 RNase H inhibitors.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China.
| | - Çagil Urhan
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China
| | - Estrella Frutos-Beltrán
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China
| | - Yucen Tao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, K. U. Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, K. U. Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid, Spain.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, China.
| |
Collapse
|