1
|
Shariat Razavi SA, Vafaei F, Ebrahimi SM, Abbasinezhad-Moud F, Shahini A, Qoorchi Moheb Seraj F, Alavi MS, Fadavieslam A, Ferns GA, Bahrami A. The protective effect of parthenolide in an in vitro model of Parkinson's disease through its regulation of nuclear factor-kappa B and oxidative stress. Mol Biol Rep 2024; 51:819. [PMID: 39017801 DOI: 10.1007/s11033-024-09779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, and is due to the degeneration of dopaminergic neurons. It is multifactorial, caused by genetic and environmental factors and currently has no definitive cure. We have investigated the protective effects of parthenolide (PTN), a compound with known anti-inflammatory and antioxidant properties, in an in vitro model of PD, that is induced by 6-OHDA, and that causes neurotoxicity in SH-SY5Y human neuroblastoma cells. METHODS AND RESULTS SH-SY5Y cells were pretreated with PTN to assess its protective effects in 6-OHDA-induced cellular damage. Cell viability was measured using Alamar blue. Apoptosis was evaluated using an Annexin V-FITC/PI kit. Reactive oxygen species (ROS) levels were quantified, and expression levels of apoptotic markers (Bax, Bcl-2, p53) and NF-κB were analyzed via Western blotting and Quantitative real-time- (qRT-) PCR. We found that 6-OHDA reduced cell viability, that was inhibited significantly by pre-treatment with PTN (p < 0.05). Flow cytometry revealed that PTN reduced apoptosis induced by 6-OHDA. PTN also reduced the ROS levels raised by 6-OHDA (p < 0.05). Moreover, PTN decreased the expression of Bax, p53, NF-κB, and p-NF-κB that were increased by treatment with 6-OHDA. CONCLUSION These findings indicate the potential beneficial effects of PTN in an in vitro model of PD via mitigating oxidative stress and inflammation, suggested PTN as a promising agent to be used for PD therapy, warranting further investigation in preclinical and clinical studies.
Collapse
Affiliation(s)
| | - Farzane Vafaei
- Department of Pharmacy, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, PO 311-86145, Iran
| | - Seyyed Moein Ebrahimi
- Department of Biochemistry, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farzaneh Abbasinezhad-Moud
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farid Qoorchi Moheb Seraj
- Endovascular Section, Neurosurgical Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arghavan Fadavieslam
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Afsane Bahrami
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Clinical Research Development Unit of Akbar Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Grafakou ME, Barda C, Skaltsa H, Heilmann J. Study on the metabolism of natural sesquiterpene lactones in human liver microsomes using LC-Q-TOF-MS/MS. Nat Prod Res 2024; 38:1855-1863. [PMID: 37354443 DOI: 10.1080/14786419.2023.2226301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Sesquiterpene lactones are naturally occurring, highly active -specialised metabolites, which are biosynthesized by important medicinal plants, fulfilling many functions. The in vitro metabolism of parthenolide (1), grosheimin (2), carbetolide C (3), 8α-O-(3,4-dihydroxy--methylenebutanoyloxy)-dehydromelitensin (4) and arteludovicinolide A (5) was examined using human liver microsomes. Phase I, phase II (glucuronidation), as well as combined phase I + II metabolism were studied. Metabolites were identified via liquid chromatography-high resolution quadrupole time-of-flight mass spectrometry. Monohydroxylated, hydrated, carboxylated, methylated derivatives, together with corresponding monoglucuronides were detected, suggesting that the metabolism of sesquiterpene lactones is changeable due to structural features and scaffold diversity, though the lactone ring is the main site of metabolism.
Collapse
Affiliation(s)
- Maria-Eleni Grafakou
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Chemistry, University of Regensburg, Regensburg, Germany
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Barda
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Helen Skaltsa
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Joerg Heilmann
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Chemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Zhang CS, Lyu S, Zhang AL, Guo X, Sun J, Lu C, Luo X, Xue CC. Natural products for migraine: Data-mining analyses of Chinese Medicine classical literature. Front Pharmacol 2022; 13:995559. [PMID: 36386198 PMCID: PMC9650126 DOI: 10.3389/fphar.2022.995559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/13/2022] [Indexed: 08/12/2024] Open
Abstract
Background: Treatment effect of current pharmacotherapies for migraine is unsatisfying. Discovering new anti-migraine natural products and nutraceuticals from large collections of Chinese medicine classical literature may assist to address this gap. Methods: We conducted a comprehensive search in the Encyclopedia of Traditional Chinese Medicine (version 5.0) to obtain migraine-related citations, then screened and scored these citations to identify clinical management of migraine using oral herbal medicine in history. Information of formulae, herbs and symptoms were further extracted. After standardisation, these data were analysed using frequency analysis and the Apriori algorithm. Anti-migraine effects and mechanisms of actions of the main herbs and formula were summarised. Results: Among 614 eligible citations, the most frequently used formula was chuan xiong cha tiao san (CXCTS), and the most frequently used herb was chuan xiong. Dietary medicinal herbs including gan cao, bai zhi, bo he, tian ma and sheng jiang were identified. Strong associations were constructed among the herb ingredients of CXCTS formula. Symptoms of chronic duration and unilateral headache were closely related with herbs of chuan xiong, gan cao, fang feng, qiang huo and cha. Symptoms of vomiting and nausea were specifically related to herbs of sheng jiang and ban xia. Conclusion: The herb ingredients of CXCTS which presented anti-migraine effects with reliable evidence of anti-migraine actions can be selected as potential drug discovery candidates, while dietary medicinal herbs including sheng jiang, bo he, cha, bai zhi, tian ma, and gan cao can be further explored as nutraceuticals for migraine.
Collapse
Affiliation(s)
- Claire Shuiqing Zhang
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Shaohua Lyu
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Anthony Lin Zhang
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
| | - Xinfeng Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Jingbo Sun
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Chuanjian Lu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiaodong Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Charlie Changli Xue
- The China-Australia International Research Centre for Chinese Medicine, STEM College, RMIT University, Melbourne, VIC, Australia
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
4
|
Pathak AR, Patel SR, Joshi AG, Shrivastava N, Sindhav G, Sharma S, Ansari H. Elicitor mediated enhancement of shoot biomass and lupeol production in Hemidesmus indicus (L.) R. Br. ex. Schult. and Tylophora indica (Burm. F.) Merrill using yeast extract and salicylic acid. Nat Prod Res 2022; 37:1767-1773. [PMID: 36059233 DOI: 10.1080/14786419.2022.2119388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hemidesmus indicus (L.) R. Br. ex Schult. and Tylophora indica (Burm. F.) Merrill shoot cultures were treated with different concentrations of yeast extract (YE; 25-200 mg/L) and salicylic acid (SA; 50-200 µM), and their effect on lupeol production was assessed. The maximum dry weight (DW) biomass was recorded when H. indicus shoots were treated with SA (50 µM) and T. indica shoots with YE (200 mg/L). Highest lupeol yield (335.40 ± 0.04 µg/g DW) was obtained in H. indicus shoots after treatment with 50 µM of SA for 3 weeks. Whereas in T. indica, maximum lupeol content (584.26 ± 8.14 µg/g DW) was recorded by giving treatment with 25 μM of SA for 6 weeks.
Collapse
Affiliation(s)
- Ashutosh R Pathak
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.,Department of Botany, University of Rajasthan, Jaipur, Rajasthan, India
| | - Swati R Patel
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Aruna G Joshi
- Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Neeta Shrivastava
- B.V. Patel Pharmaceutical Education & Research Development (PERD) Centre, Ahmedabad, Gujarat, India
| | - Gaurang Sindhav
- Department of Zoology, Biomedical Technology, Human Genetics, and Wildlife Biology & Conservation, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Sonal Sharma
- B.V. Patel Pharmaceutical Education & Research Development (PERD) Centre, Ahmedabad, Gujarat, India.,Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Department of Science and Technology, Govt. of Gujarat, Ahmedabad, Gujarat, India
| | - Hafsa Ansari
- Department of Zoology, Biomedical Technology, Human Genetics, and Wildlife Biology & Conservation, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|