1
|
Guo J, Wen J, Xiang Q, Huang Y, Hu T, Rao C. Study on SH-SY5Y autophagy inhibition and apoptosis induced by methanol extract of Zanthoxylum armatum DC. based on mTOR signal pathway. Toxicol Res (Camb) 2024; 13:tfae013. [PMID: 38332946 PMCID: PMC10848228 DOI: 10.1093/toxres/tfae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
Background Zanthoxylum armatum DC. (ZADC) is a novel food raw material resource, offering both edible and medicinal properties. Recent research has unveiled the toxic nature of ZADC, particularly its close association with the nervous system. In a prior study, we observed that administering methanol extract of Zanthoxylum armatum DC. (MZADC) to rats via gavage at a dose of 1.038 g/kg resulted in various neurotoxicity symptoms, including excessive salivation, reduced mobility, unsteady gait, muscle twitching, and altered respiratory rates. Materials and methods We conducted cell-based research to assess the safety of ZADC and elucidate its potential toxic mechanism. In addition, we used experimental methods such as Cell Counting Kit-8, Western blot, and Flow cytometry to detect cytotoxicity in SH-SY5Y cells after intervention with MZADC. Results Following exposure of SY-SY5Y cells with MZADC, a substantial decline in cell viability was observed, accompanied by a concentration-dependent increase in intracellular reactive oxygen species (ROS) levels. Additionally, MZADC induced cellular oxidative stress, leading to elevated malonic dialdehyde (MDA) and superoxide dismutase (SOD) concentrations while decreasing glutathione (GSH) levels. Furthermore, MZADC induced apoptosis at varying doses (20, 40, and 60 μg/mL), and this effect was associated with increased Caspase-3, Bax expressions, and reduced Bcl2 and Bcl2/Bax expressions. In addition, the investigation revealed that MZADC induced autophagy inhibition in SH-SY5Y cells by activating the mTOR signaling pathway, resulting in a decrease in LC3II/LCI and Beclin-1, while increasing p-mTOR/mTOR, p62. Conclusion Consequently, this study suggests that MZADC triggers the mTOR pathway through oxidative stress in SH-SY5Y cells, ultimately leading to apoptosis. Understanding the toxicity mechanisms associated with ZADC can offer a valuable theoretical and experimental basis for its development and utilization.
Collapse
Affiliation(s)
- Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan 611137, China
| |
Collapse
|
2
|
Guo J, Yang N, Zhang J, Huang Y, Xiang Q, Wen J, Chen Y, Hu T, Qiuyan L, Rao C. Neurotoxicity study of ethyl acetate extract of Zanthoxylum armatum DC. on SH-SY5Y based on ROS mediated mitochondrial apoptosis pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117321. [PMID: 37866465 DOI: 10.1016/j.jep.2023.117321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC. (ZADC) is a traditional medicinal plant with various pharmacological activities and is widely used in China, Japan, India, and other regions. Previous studies have revealed that the methanol extract of ZADC can cause neurotoxicity symptoms in rats, such as drooling, decreased appetite, decreased movement, and increased respiratory rate. However, the basis of these toxic substances and the mechanism of neurotoxicity remain unclear. AIM OF THE STUDY To evaluate the effects of ZADC on nerve cells and their damage mechanisms and discuss the possible toxic substance basis. MATERIALS AND METHODS The ethyl acetate extract of ZADC is obtained by extracting the methanol extract of ZADC with ethyl acetate. The Q-Orbitrap LC-MS/MS method was employed to analyze the chemical composition of the EA extract of ZADC. SH-SY5Y cells were incubated with different concentrations of the ethyl acetate extract of ZADC. The cytotoxicity of the extract was evaluated using CCK-8, LDH, and ROS assays, and the oxidative stress status of cells was assessed using MDA, GSH, and SOD. Cell apoptosis was detected using flow cytometry. Damage to mitochondrial function was evaluated by labeling mitochondria, ATP, and MMP with fluorescence. Cyto-C, Caspase-3, Caspase-9, Apaf-1, Bax, and reduced Bcl2 expression were measured to evaluate the activation of the mitochondrial apoptosis pathway. Finally, NAC intervention was used to detect changes in the relevant indicators. The activation of mitochondrial apoptosis pathway was evaluated by measuring Cyto-C, Caspase-3, Caspase-9, Apaf-1, and Bax and Bcl2 expression. Finally, NAC intervention was utilized to detect changes in the relevant indicators. RESULTS After treating SY-SY5Y cells with EA extract from ZADC, cell viability decreased significantly, and the intracellular ROS level increased in a dose-dependent manner. Meanwhile, ZADC can cause cellular oxidative stress and increase MDA and SOD concentrations while decreasing GSH concentrations. It can also shorten the mitochondrial cristae and decrease the number of mitochondria. In contrast, it can reduce ATP synthesis in the mitochondria and mitochondrial membrane potential (MMP). Furthermore, it increased the apoptosis rate and the expression of Cyto-C, Caspase-3, Caspase-9, Apaf-1, and Bax and reduced Bcl2 expression. NAC intervention alleviated the reduction in SH-SY5Y cell survival and the accumulation of reactive oxygen species induced by the EA extract in ZADC. It also inhibits signaling pathways dominated by proteins, such as Cyto-C, reducing cell apoptosis and cytotoxicity. A total of 46 compounds were identified in the extracts. CONCLUSIONS The results suggest that EA extract of ZADC can induce the mitochondrial apoptotic pathway by accumulating ROS in cells, leading to apoptosis. Antioxidants had a good inhibitory and protective effect against cell damage caused by the EA extract of ZADC. The neurotoxic components of ZADC may be organic acids and compounds containing amino groups.
Collapse
Affiliation(s)
- Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Liu Qiuyan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China.
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Avenue, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
3
|
Patel K, Patel DK. Biological Potential and Therapeutic Effectiveness of Phytoproduct 'Fargesin' in Medicine: Focus on the Potential of an Active Phytochemical of Magnolia fargesii. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:79-89. [PMID: 38726781 DOI: 10.2174/0127722708286664240429093913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 10/16/2024]
Abstract
Flos Magnoliae is one of the important medicinal plants in different traditional medicine, including Chinese herbal medicine. Lignans and neolignans, including tetrahydrofurofuran, tetrahydrofuran, and aryltetralin, are present in the Flos Magnoliae species. A wide range of pharmacological activity of Flos Magnoliae has been reported in medicine. Fargesin has been isolated from Magnolia fargesii and it is a lignan-class phytochemical. Fargesin has numerous pharmacological activities in medicine, including its effectiveness on lipid and glucose metabolism, oxidative stress, myocardial apoptosis, etc. In the present work, we have summarized the detailed scientific information of fargesin concerning its medicinal properties and pharmacological activities. Numerous biological and chemical aspects of fargesin are discussed here, including the detailed pharmacological activities and analytical aspects of fargesin. In this review, we have also compiled analytical data on fargesin based on available scientific literature. Ethnopharmacological information on fargesin was gathered by a literature survey on PubMed, Science Direct, Google, and Scopus using the terms fargesin, Flos Magnoliae, phytochemical, and herbal medicine. The present review paper compiled the scientific data on fargesin in medicine for its pharmacological activities and analytical aspects in a very concise manner with proper citations. The present work signified the biological importance of fargesin in medicine due to its significant impact on bone disorders, lung injury, colon cancer, atherosclerosis, neurological disorders, ischemia, sars-cov-2, allergy, lipid and glucose metabolism, melanin synthesis, and different classes of enzymes. Furthermore, fargesin also has anti-inflammatory, antihypertensive, antiprotozoal, antimycobacterial, and antifeedant activity. However, analytical methods used for the separation, identification and isolation of fargesin in different biological and non-biological samples were also covered in the present review. The present work revealed the pharmacological activities and analytical aspects of fargesin in medicine and other allied health sectors.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| |
Collapse
|