Bai Z, Tao W, Zhou Y, Cao Y, Yu S, Shi Z. Xiao-Yao-San protects against anti-tuberculosis drug-induced liver injury by regulating Grsf1 in the mitochondrial oxidative stress pathway.
Front Pharmacol 2022;
13:948128. [PMID:
36120303 PMCID:
PMC9475289 DOI:
10.3389/fphar.2022.948128]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Xiao-Yao-San (XYS) is a traditional Chinese prescription that regulates gastrointestinal function, improves mental and psychological abnormalities, and enhances liver function. However, the underlying mechanism of XYS for relieving anti-tuberculosis (AT) drug-induced liver injury is not clear.
Objective: The current study examined whether XYS alleviated the symptoms of AT drug-induced liver injury in mice via the mitochondrial oxidative stress pathway.
Methods: BALB/c male mice were randomly divided into four groups of 12 animals, including a control group, a model group, a 0.32 g/kg XYS group, and a 0.64 g/kg XYS group. The effect of XYS on the degree of liver injury was observed using haematoxylin and eosin staining (HE) and oil red O staining of pathological sections, biochemical parameters, and reactive oxygen species (ROS) levels. The protein expression of mitochondrial synthesis-related proteins and ferroptosis-related proteins was examined using Western blotting.
Results: XYS improved the pathological changes in liver tissue and reduced the level of oxidative stress in liver-injured mice. XYS increased the expression of mitochondrial synthesis-related proteins and reversed the expression of ferroptosis-related proteins. Knockdown of G-rich RNA sequence binding factor 1 (Grsf1) expression with Grsf1 shRNA blocked the protective effects of XYS in liver injury.
Conclusion: Our findings suggest that XYS alleviates AT drug-induced liver injury by mediating Grsf1 in the mitochondrial oxidative stress pathway.
Collapse