1
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
2
|
Chiba CH, Knirsch MC, Azzoni AR, Moreira AR, Stephano MA. Cell-free protein synthesis: advances on production process for biopharmaceuticals and immunobiological products. Biotechniques 2021; 70:126-133. [PMID: 33467890 DOI: 10.2144/btn-2020-0155] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biopharmaceutical products are of great importance in the treatment or prevention of many diseases and represent a growing share of the global pharmaceutical market. The usual technology for protein synthesis (cell-based expression) faces certain obstacles, especially with 'difficult-to-express' proteins. Cell-free protein synthesis (CFPS) can overcome the main bottlenecks of cell-based expression. This review aims to present recent advances in the production process of biologic products by CFPS. First, key aspects of CFPS systems are summarized. A description of several biologic products that have been successfully produced using the CFPS system is provided. Finally, the CFPS system's ability to scale up and scale down, its main limitations and its application for biologics production are discussed.
Collapse
Affiliation(s)
- Camila Hiromi Chiba
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Camargo Knirsch
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano Rodrigues Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio R Moreira
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Marco Antonio Stephano
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Mohr B, Giannone RJ, Hettich RL, Doktycz MJ. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude E. coli Cell-Free Systems. ACS Synth Biol 2020; 9:2986-2997. [PMID: 33044063 DOI: 10.1021/acssynbio.9b00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Progress in cell-free protein synthesis (CFPS) has spurred resurgent interest in engineering complex biological metabolism outside of the cell. Unlike purified enzyme systems, crude cell-free systems can be prepared for a fraction of the cost and contain endogenous cellular pathways that can be activated for biosynthesis. Endogenous activity performs essential functions in cell-free systems including substrate biosynthesis and energy regeneration; however, use of crude cell-free systems for bioproduction has been hampered by the under-described complexity of the metabolic networks inherent to a crude lysate. Physical and chemical cultivation parameters influence the endogenous activity of the resulting lysate, but targeted efforts to engineer this activity by manipulation of these nongenetic factors has been limited. Here growth medium composition was manipulated to improve the one-pot in vitro biosynthesis of phenol from glucose via the expression of Pasteurella multocida phenol-tyrosine lyase in crude E. coli lysates. Crude cell lysate metabolic activity was focused toward the limiting precursor tyrosine by targeted growth medium dropouts guided by proteomics. The result is the activation of a 25-step enzymatic reaction cascade involving at least three endogenous E. coli metabolic pathways. Additional modification of this system, through CFPS of feedback intolerant AroG improves yield. This effort demonstrates the ability to activate a long, complex pathway in vitro and provides a framework for harnessing the metabolic potential of diverse organisms for cell-free metabolic engineering. The more than 6-fold increase in phenol yield with limited genetic manipulation demonstrates the benefits of optimizing growth medium for crude cell-free extract production and illustrates the advantages of a systems approach to cell-free metabolic engineering.
Collapse
Affiliation(s)
- Benjamin Mohr
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Richard J. Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Robert L. Hettich
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mitchel J. Doktycz
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
4
|
Xiao X, Zhou Y, Sun Y, Wang Q, Liu J, Huang J, Zhu X, Yang X, Wang K. Integration of cell-free protein synthesis and purification in one microfluidic chip for on-demand production of recombinant protein. BIOMICROFLUIDICS 2018; 12:054102. [PMID: 30271517 PMCID: PMC6136919 DOI: 10.1063/1.5042307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Recombinant proteins have shown several benefits compared with their non-recombinant counterparts in protein therapeutics. However, there are still some problems with the storage and distribution of recombinant proteins, owing to their temperature sensitivity. Microfluidic chips can integrate different functional modules into a single device because of the advantages of integration and miniaturization, which have the special potential to synthesize drugs when and where they are needed most. Here, we integrated cell-free protein synthesis and purification into a microfluidic chip for the production of recombinant protein. The chip consisted of a main channel and a branch channel. The main channel included two pinches, which were filled with template DNA-modified agarose microbeads and nickel ion-modified agarose beads as the cell-free protein synthesis unit and protein purification unit, respectively. The reaction mixture for protein synthesis was introduced into the main channel and first passed through the protein synthesis unit where the target protein was synthesized; next, the reaction mixture passed through the protein purification unit where the target protein was captured; and, finally, pure protein was collected at the outlet when washing buffer and eluting buffer were sequentially introduced into the branch channel. Enhanced green fluorescent protein (EGFP) was used as the model to investigate the performance of our chip. One chip could produce 70 μl of EGFP solution (144.3 μg/ml, 10.1 μg) per batch, and another round of protein synthesis and purification could be performed after replacing or regenerating nickel ion-modified agarose beads. It should be possible to produce other recombinant proteins on demand with this chip by simply replacing the template DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohai Yang
- Authors to whom correspondence should be addressed: and . Tel./Fax: +86-731-88821566
| | - Kemin Wang
- Authors to whom correspondence should be addressed: and . Tel./Fax: +86-731-88821566
| |
Collapse
|
5
|
Krinsky N, Kaduri M, Zinger A, Shainsky-Roitman J, Goldfeder M, Benhar I, Hershkovitz D, Schroeder A. Synthetic Cells Synthesize Therapeutic Proteins inside Tumors. Adv Healthc Mater 2018; 7:e1701163. [PMID: 29283226 PMCID: PMC6684359 DOI: 10.1002/adhm.201701163] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/11/2017] [Indexed: 12/14/2022]
Abstract
Synthetic cells, artificial cell-like particles, capable of autonomously synthesizing RNA and proteins based on a DNA template, are emerging platforms for studying cellular functions and for revealing the origins-of-life. Here, it is shown for the first time that artificial lipid-based vesicles, containing the molecular machinery necessary for transcription and translation, can be used to synthesize anticancer proteins inside tumors. The synthetic cells are engineered as stand-alone systems, sourcing nutrients from their biological microenvironment to trigger protein synthesis. When pre-loaded with template DNA, amino acids and energy-supplying molecules, up to 2 × 107 copies of green fluorescent protein are synthesized in each synthetic cell. A variety of proteins, having molecular weights reaching 66 kDa and with diagnostic and therapeutic activities, are synthesized inside the particles. Incubating synthetic cells, encoded to secrete Pseudomonas exotoxin A (PE) with 4T1 breast cancer cells in culture, resulted in killing of most of the malignant cells. In mice bearing 4T1 tumors, histological evaluation of the tumor tissue after a local injection of PE-producing particles indicates robust apoptosis. Synthetic cells are new platforms for synthesizing therapeutic proteins on-demand in diseased tissues.
Collapse
Affiliation(s)
- Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
- The Interdisciplinary Programs for Biotechnology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Mor Goldfeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Dov Hershkovitz
- Department of Pathology, Tel-Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
6
|
Peñalber-Johnstone C, Ge X, Tran K, Selock N, Sardesai N, Gurramkonda C, Pilli M, Tolosa M, Tolosa L, Kostov Y, Frey DD, Rao G. Optimizing cell-free protein expression in CHO: Assessing small molecule mass transfer effects in various reactor configurations. Biotechnol Bioeng 2017; 114:1478-1486. [PMID: 28266026 DOI: 10.1002/bit.26282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/11/2017] [Accepted: 03/01/2017] [Indexed: 01/12/2023]
Abstract
Cell-free protein synthesis (CFPS) is an ideal platform for rapid and convenient protein production. However, bioreactor design remains a critical consideration in optimizing protein expression. Using turbo green fluorescent protein (tGFP) as a model, we tracked small molecule components in a Chinese Hamster Ovary (CHO) CFPS system to optimize protein production. Here, three bioreactors in continuous-exchange cell-free (CECF) format were characterized. A GFP optical sensor was built to monitor the product in real-time. Mass transfer of important substrate and by-product components such as nucleoside triphosphates (NTPs), creatine, and inorganic phosphate (Pi) across a 10-kDa MWCO cellulose membrane was calculated. The highest efficiency measured by tGFP yields were found in a microdialysis device configuration; while a negative effect on yield was observed due to limited mass transfer of NTPs in a dialysis cup configuration. In 24-well plate high-throughput CECF format, addition of up to 40 mM creatine phosphate in the system increased yields by up to ∼60% relative to controls. Direct ATP addition, as opposed to creatine phosphate addition, negatively affected the expression. Pi addition of up to 30 mM to the expression significantly reduced yields by over ∼40% relative to controls. Overall, data presented in this report serves as a valuable reference to optimize the CHO CFPS system for next-generation bioprocessing. Biotechnol. Bioeng. 2017;114: 1478-1486. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chariz Peñalber-Johnstone
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | | | - Kevin Tran
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Nicholas Selock
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Neha Sardesai
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Chandrasekhar Gurramkonda
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Manohar Pilli
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Michael Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Leah Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Douglas D Frey
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore County, 1000 Hilltop Circle, TRC 252, Baltimore, Maryland 21250
| |
Collapse
|