1
|
Yu X, Du J, Zhang W, Zhang X, Zhao H, Wen Q, Xu R. Screening of serum markers in patients with resistant hypertension. Heliyon 2024; 10:e36333. [PMID: 39286109 PMCID: PMC11403418 DOI: 10.1016/j.heliyon.2024.e36333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Background This study delves into the intricacies of resistant hypertension (RH), a prevalent yet enigmatic chronic cardiovascular ailment that is linked to a myriad of complications. Although its full pathogenesis is still shrouded in mystery, the field of proteomics offers a beacon of hope, with its potential to shed light on the proteins that orchestrate the tapestry of life. Harnessing the power of proteomics is essential for demystifying the pathogenesis of RH, enabling more precise diagnostics and treatments, and ultimately improving prognostic outcomes. Methods Our approach was to employ rigorous statistical analyses to home in on proteins with significant expression variances between our two cohorts. We complemented this with bioinformatics tools to unravel the intricate functions and pathways of these proteins. By synthesizing these insights with the clinical profiles of our patients, we were able to distill a set of definitive biomarkers with diagnostic potential. In our quest for clarity, we also embarked on a retrospective journey, amassing and scrutinizing clinical data from both RH and hypertension (HTN) patients. We crafted and rigorously assessed risk factor models to evaluate their diagnostic prowess. Results Our exploration spanned across 30 blood samples from RH patients and 20 from those grappling with HTN. Our inquiry yielded some compelling revelations: (1) RH patients showcased 29 unique proteins, in contrast to the 59 unique proteins found in HTN patients. A deeper dive into the proteomic data unveiled molecular functions predominantly tied to lipid metabolism, protein networking, and oxidative stress, with a spotlight on pathways such as cholesterol metabolism, coagulation, and the complement cascade. (2) By charting receiver operating characteristic curves and rigorously analyzing the proteomic data, we surfaced 11 proteins with notable diagnostic potential, tightly interwoven with clinical metrics. Conclusion Our research has pinpointed 11 proteins that stand as promising serum biomarkers, endowed with significant diagnostic value. This discovery marks a stride towards a more nuanced understanding and management of resistant hypertension.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, 250013, China
| | - Jianmin Du
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Wenyu Zhang
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Xinghai Zhang
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Hengli Zhao
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Qing Wen
- Department of Clinical Research Central, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Rui Xu
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| |
Collapse
|
2
|
WANG Z, LI Y, WANG D, MA B, MIAO L, REN J, LIU J, LIU J. Proteomics analysis of coronary atherosclerotic heart disease with different Traditional Chinese Medicine syndrome types before and after percutaneous coronary intervention. J TRADIT CHIN MED 2024; 44:554-563. [PMID: 38767640 PMCID: PMC11077157 DOI: 10.19852/j.cnki.jtcm.20240408.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/25/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE To investigate the underlying protein molecular mechanisms of "Qi stagnation and blood stasis syndrome" (QS) and "Qi deficiency and blood stasis syndrome" (QD), as two subtypes of coronary artery disease (CAD) in Traditional Chinese Medicine (TCM), following percutaneous coronary intervention (PCI). METHODS In this study, a total of 227 CAD patients with QS and 211 CAD patients with QD were enrolled; all participants underwent PCI. Label-free quantification proteomics were employed to analyze the changes in serum in two subtypes of CAD patients before and 6 months after PCI, aiming to elucidate the intervention mechanism of PCI in treating CAD characterized by two different TCM syndromes. RESULTS Biochemical analysis revealed significant changes in tumor necrosis factor-α, high density lipoprotein cholesterol, blood stasis clinical symptoms observation, and Gensini levels in both patient groups post-PCI; Proteomic analysis identified 79 and 95 differentially expressed proteins in the QS and QD patient groups, respectively, compared to their control groups. complement C8 alpha chain, complement factor H, apolipoprotein H, apolipoprotein B, plasminogen, carbonic anhydrase 2, and complement factor I were altered in both comparison groups. Furthermore, enrichment analysis demonstrated that cell adhesion and connectivity-related processes underwent changes in QS patients post-PCI, whereas lipid metabolism-related pathways, including the peroxisome proliferator-activated receptor signaling pathway and extracellular matrix receptor interaction, underwent changes in the QD group. The protein-protein interaction network analysis further enriched 52 node proteins, including apolipoprotein B, lipoprotein (a), complement C5, apolipoprotein A4, complement C8 alpha chain, complement C8 beta chain, complement C8 gamma chain, apolipoprotein H, apolipoprotein A-Ⅱ, albumin, complement C4-B, apolipoprotein C3, among others. The functional network of these proteins is posited to contribute to the pathophysiology of CAD characterized by TCM syndromes. CONCLUSION The current quantitative proteomic study has preliminarily identified biomarkers of CAD in different TCM subtypes treated with PCI, potentially laying the groundwork for understanding the protein profiles associated with the treatment of various TCM subtypes of CAD.
Collapse
Affiliation(s)
- Zhibo WANG
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Ying LI
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Daoping WANG
- 2 the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100098, China
| | - Bo MA
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Lan MIAO
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Junguo REN
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| | - Jinghua LIU
- 3 Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jianxun LIU
- 1 Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, Beijing 100000, China
| |
Collapse
|
3
|
De Beer D, Mels CMC, Schutte AE, Delles C, Mary S, Mullen W, Latosinska A, Mischak H, Kruger R. Identifying a urinary peptidomics profile for hypertension in young adults: The African-PREDICT study: Urinary peptidomics and hypertension: Urinary peptidomics and hypertension. Proteomics 2023; 23:e2200444. [PMID: 36943111 DOI: 10.1002/pmic.202200444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Hypertension is one of the most important and complex risk factors for cardiovascular diseases (CVDs). By using urinary peptidomics analyses, we aimed to identify peptides associated with hypertension, building a framework for future research towards improved prediction and prevention of premature development of CVD. We included 78 hypertensive and 79 normotensive participants from the African-PREDICT study (aged 20-30 years), matched for sex (51% male) and ethnicity (49% black and 51% white). Urinary peptidomics data were acquired using capillary-electrophoresis-time-of-flight-mass-spectrometry. Hypertension-associated peptides were identified and combined into a support vector machine-based multidimensional classifier. When comparing the peptide data between the normotensive and hypertensive groups, 129 peptides were nominally differentially abundant (Wilcoxon p < 0.05). Nonetheless, only three peptides, all derived from collagen alpha-1(III), remained significantly different after rigorous adjustments for multiple comparisons. The 37 most significant peptides (all p ≤ 0.001) served as basis for the development of a classifier, with 20 peptides being combined into a unifying score, resulting in an AUC of 0.85 in the ROC analysis (p < 0.001), with 83% sensitivity at 80% specificity. Our study suggests potential value of urinary peptides in the classification of hypertension, which could enable earlier diagnosis and better understanding of the pathophysiology of hypertension and premature cardiovascular disease development.
Collapse
Affiliation(s)
- Dalene De Beer
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Catharina M C Mels
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Aletta E Schutte
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- School of Population Health, The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University (Potchefstroom Campus), Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
McKetney J, Jenkins CC, Minogue C, Mach PM, Hussey EK, Glaros TG, Coon J, Dhummakupt ES. Proteomic and metabolomic profiling of acute and chronic stress events associated with military exercises. Mol Omics 2021; 18:279-295. [PMID: 34860218 DOI: 10.1039/d1mo00271f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By characterizing physiological changes that occur in warfighters during simulated combat, we can start to unravel the key biomolecular components that are linked to physical and cognitive performance. Viable field-based sensors for the warfighter must be rapid and noninvasive. In an effort to facilitate this, we applied a multiomics pipeline to characterize the stress response in the saliva of warfighters to correlate biomolecular changes with overall performance and health. In this study, two different stress models were observed - one of chronic stress and one of acute stress. In both models, significant perturbations in the immune, metabolic, and protein manufacturing/processing systems were observed. However, when differentiating between stress models, specific metabolites associated with the "fight or flight" response and protein folding were seen to be discriminate of the acute stress model.
Collapse
Affiliation(s)
- Justin McKetney
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Conor C Jenkins
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA.
| | - Catie Minogue
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Phillip M Mach
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA.
| | - Erika K Hussey
- DEVCOM Soldier Center, Natick, MA 01760, USA.,Defense Innovation Unit, Mountain View, CA 94043, USA
| | - Trevor G Glaros
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, MD 21010, USA. .,Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Joshua Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA. .,National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA.,Morgridge Institute for Research, Madison, WI 53515, USA.,Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
5
|
Abstract
Significance: The vascular extracellular matrix (ECM) not only provides mechanical stability but also manipulates vascular cell behaviors, which are crucial for vascular function and homeostasis. ECM remodeling, which alters vascular wall mechanical properties and exposes vascular cells to bioactive molecules, is involved in the development and progression of hypertension. Recent Advances: This brief review summarized the dynamic changes in ECM components and their modification and degradation during hypertension and after antihypertensive treatment. We also discussed how alterations in the ECM amount, assembly, mechanical properties, and degradation fragment generation provide input into the pathological process of hypertension. Critical Issues: Although the relevance between ECM remodeling and hypertension has been recognized, the underlying mechanism by which ECM remodeling initiates the development of hypertension remains unclear. Therefore, the modulation of ECM remodeling on arterial stiffness and hypertension in genetically modified rodent models is summarized in this review. The circulating biomarkers based on ECM metabolism and therapeutic strategies targeting ECM disorders in hypertension are also introduced. Future Directions: Further research will provide more comprehensive understanding of ECM remodeling in hypertension by the application of matridomic and degradomic approaches. The better understanding of mechanisms underlying vascular ECM remodeling may provide novel potential therapeutic strategies for preventing and treating hypertension. Antioxid. Redox Signal. 34, 765-783.
Collapse
Affiliation(s)
- Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Miotto DS, Dionizio A, Jacomini AM, Zago AS, Buzalaf MAR, Amaral SL. Identification of Aortic Proteins Involved in Arterial Stiffness in Spontaneously Hypertensive Rats Treated With Perindopril:A Proteomic Approach. Front Physiol 2021; 12:624515. [PMID: 33679438 PMCID: PMC7928294 DOI: 10.3389/fphys.2021.624515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial stiffness, frequently associated with hypertension, is associated with disorganization of the vascular wall and has been recognized as an independent predictor of all-cause mortality. The identification of the molecular mechanisms involved in aortic stiffness would be an emerging target for hypertension therapeutic intervention. This study evaluated the effects of perindopril on pulse wave velocity (PWV) and on the differentially expressed proteins in aorta of spontaneously hypertensive rats (SHR), using a proteomic approach. SHR and Wistar rats were treated with perindopril (SHRP) or water (SHRc and Wistar rats) for 8 weeks. At the end, SHRC presented higher systolic blood pressure (SBP, +70%) and PWV (+31%) compared with Wistar rats. SHRP had higher values of nitrite concentration and lower PWV compared with SHRC. From 21 upregulated proteins in the aortic wall from SHRC, most of them were involved with the actin cytoskeleton organization, like Tropomyosin and Cofilin-1. After perindopril treatment, there was an upregulation of the GDP dissociation inhibitors (GDIs), which normally inhibits the RhoA/Rho-kinase/cofilin-1 pathway and may contribute to decreased arterial stiffening. In conclusion, the results of the present study revealed that treatment with perindopril reduced SBP and PWV in SHR. In addition, the proteomic analysis in aorta suggested, for the first time, that the RhoA/Rho-kinase/Cofilin-1 pathway may be inhibited by perindopril-induced upregulation of GDIs or increases in NO bioavailability in SHR. Therefore, we may propose that activation of GDIs or inhibition of RhoA/Rho-kinase pathway could be a possible strategy to treat arterial stiffness.
Collapse
Affiliation(s)
- Danyelle S Miotto
- Joint Graduate Program in Physiological Sciences, Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - André M Jacomini
- Post-Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil
| | - Anderson S Zago
- Post-Graduate Program in Movement Sciences, São Paulo State University, Bauru, Brazil.,Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
| | | | - Sandra L Amaral
- Joint Graduate Program in Physiological Sciences, Federal University of Sao Carlos and São Paulo State University, UFSCar/UNESP, São Carlos, Brazil.,Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
| |
Collapse
|
7
|
Majuta SN, DeBastiani A, Li P, Valentine SJ. Combining Field-Enabled Capillary Vibrating Sharp-Edge Spray Ionization with Microflow Liquid Chromatography and Mass Spectrometry to Enhance 'Omics Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:473-485. [PMID: 33417454 PMCID: PMC8132193 DOI: 10.1021/jasms.0c00376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Field-enabled capillary vibrating sharp-edge spray ionization (cVSSI) has been combined with high-flow liquid chromatography (LC) and mass spectrometry (MS) to establish current ionization capabilities for metabolomics and proteomics investigations. Comparisons are made between experiments employing cVSSI and a heated electrospray ionization probe representing the state-of-the-art in microflow LC-MS methods for 'omics studies. For metabolomics standards, cVSSI is shown to provide an ionization enhancement by factors of 4 ± 2 for both negative and positive ion mode analyses. For chymotryptic peptides, cVSSI is shown to provide an ionization enhancement by factors of 5 ± 2 and 2 ± 1 for negative and positive ion mode analyses, respectively. Slightly broader high-performance liquid chromatography peaks are observed in the cVSSI datasets, and several studies suggest that this results from a slightly decreased post-split flow rate. This may result from partial obstruction of the pulled-tip emitter over time. Such a challenge can be remedied with the use of LC pumps that operate in the 10 to 100 μL·min-1 flow regime. At this early stage, the proof-of-principle studies already show ion signal advantages over state-of-the-art electrospray ionization (ESI) for a wide variety of analytes in both positive and negative ion mode. Overall, this represents a ∼20-50-fold improvement over the first demonstration of LC-MS analyses by voltage-free cVSSI. Separate comparisons of the ion abundances of compounds eluting under identical solvent conditions reveal ionization efficiency differences between cVSSI and ESI and may suggest varied contributions to ionization from different physicochemical properties of the compounds. Future investigations of parameters that could further increase ionization gains in negative and positive ion mode analyses with the use of cVSSI are briefly presented.
Collapse
Affiliation(s)
- Sandra N. Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| |
Collapse
|
8
|
Balderas-León I, Baigts-Allende D, Cardador-Martínez A. Antioxidant, angiotensin-converting enzyme, and α-amylase inhibitory activities of protein hydrolysates of Leucaena leucocephala seeds. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1909144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Iván Balderas-León
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro, México
| | - Diana Baigts-Allende
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Querétaro, México
- Departamento de Ingeniería Química, Ambiental y de Alimentos, Universidad de las Américas, Puebla, México
| | | |
Collapse
|
9
|
Currie G, Mary S, Delles C. Is there a role for proteomics in diabetic renal disease? Nephrol Dial Transplant 2020; 35:1133-1135. [PMID: 32777079 PMCID: PMC7417003 DOI: 10.1093/ndt/gfz017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gemma Currie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Molecular Mechanisms of Kidney Injury and Repair in Arterial Hypertension. Int J Mol Sci 2019; 20:ijms20092138. [PMID: 31052201 PMCID: PMC6539752 DOI: 10.3390/ijms20092138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
The global burden of chronic kidney disease is rising. The etiologies, heterogeneous, and arterial hypertension, are key factors contributing to the development and progression of chronic kidney disease. Arterial hypertension is induced and maintained by a complex network of systemic signaling pathways, such as the hormonal axis of the renin-angiotensin-aldosterone system, hemodynamic alterations affecting blood flow, oxygen supply, and the immune system. This review summarizes the clinical and histopathological features of hypertensive kidney injury and focusses on the interplay of distinct systemic signaling pathways, which drive hypertensive kidney injury in distinct cell types of the kidney. There are several parallels between hypertension-induced molecular signaling cascades in the renal epithelial, endothelial, interstitial, and immune cells. Angiotensin II signaling via the AT1R, hypoxia induced HIFα activation and mechanotransduction are closely interacting and further triggering the adaptions of metabolism, cytoskeletal rearrangement, and profibrotic TGF signaling. The interplay of these, and other cellular pathways, is crucial to balancing the injury and repair of the kidneys and determines the progression of hypertensive kidney disease.
Collapse
|