1
|
Duan D, Wang M, Han J, Li M, Wang Z, Zhou S, Xin W, Li X. Advances in multi-omics integrated analysis methods based on the gut microbiome and their applications. Front Microbiol 2025; 15:1509117. [PMID: 39831120 PMCID: PMC11739165 DOI: 10.3389/fmicb.2024.1509117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
The gut microbiota actually shares the host's physical space and affects the host's physiological functions and health indicators through a complex network of interactions with the host. However, its role as a determinant of host health and disease is often underestimated. With the emergence of new technologies including next-generation sequencing (NGS) and advanced techniques such as microbial community sequencing, people have begun to explore the interaction mechanisms between microorganisms and hosts at various omics levels such as genomics, transcriptomics, metabolomics, and proteomics. With the enrichment of multi-omics integrated analysis methods based on the microbiome, an increasing number of complex statistical analysis methods have also been proposed. In this review, we summarized the multi-omics research analysis methods currently used to study the interaction between the microbiome and the host. We analyzed the advantages and limitations of various methods and briefly introduced their application progress.
Collapse
Affiliation(s)
- Dongdong Duan
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mingyu Wang
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jinyi Han
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Mengyu Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Zhenyu Wang
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Shenping Zhou
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Wenshui Xin
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural, Sanya, China
- College of Animal Sciences and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Li M, Lu Y, Gao Z, Yue D, Hong J, Wu J, Xi D, Deng W, Chong Y. Pan-Omics in Sheep: Unveiling Genetic Landscapes. Animals (Basel) 2024; 14:273. [PMID: 38254442 PMCID: PMC10812798 DOI: 10.3390/ani14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Multi-omics-integrated analysis, known as panomics, represents an advanced methodology that harnesses various high-throughput technologies encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Sheep, playing a pivotal role in agricultural sectors due to their substantial economic importance, have witnessed remarkable advancements in genetic breeding through the amalgamation of multiomics analyses, particularly with the evolution of high-throughput technologies. This integrative approach has established a robust theoretical foundation, enabling a deeper understanding of sheep genetics and fostering improvements in breeding strategies. The comprehensive insights obtained through this approach shed light on diverse facets of sheep development, including growth, reproduction, disease resistance, and the quality of livestock products. This review primarily focuses on the application of principal omics analysis technologies in sheep, emphasizing correlation studies between multiomics data and specific traits such as meat quality, wool characteristics, and reproductive features. Additionally, this paper anticipates forthcoming trends and potential developments in this field.
Collapse
Affiliation(s)
- Mengfei Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Ying Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Zhendong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Dan Yue
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
- Faculty of Animal Science and Technology, Yuxi Agricultural Vocational and Technical College, Yuxi 653106, China
| | - Jieyun Hong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Yuqing Chong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| |
Collapse
|
3
|
Bernard C, Locard-Paulet M, Noël C, Duchateau M, Giai Gianetto Q, Moumen B, Rattei T, Hechard Y, Jensen LJ, Matondo M, Samba-Louaka A. A time-resolved multi-omics atlas of Acanthamoeba castellanii encystment. Nat Commun 2022; 13:4104. [PMID: 35835784 PMCID: PMC9283445 DOI: 10.1038/s41467-022-31832-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
Encystment is a common stress response of most protists, including free-living amoebae. Cyst formation protects the amoebae from eradication and can increase virulence of the bacteria they harbor. Here, we mapped the global molecular changes that occur in the facultatively pathogenic amoeba Acanthamoeba castellanii during the early steps of the poorly understood process of encystment. By performing transcriptomic, proteomic, and phosphoproteomic experiments during encystment, we identified more than 150,000 previously undescribed transcripts and thousands of protein sequences absent from the reference genome. These results provide molecular details to the regulation of expected biological processes, such as cell proliferation shutdown, and reveal new insights such as a rapid phospho-regulation of sites involved in cytoskeleton remodeling and translation regulation. This work constitutes the first time-resolved molecular atlas of an encysting organism and a useful resource for further investigation of amoebae encystment to allow for a better control of pathogenic amoebae.
Collapse
Affiliation(s)
- Clément Bernard
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Marie Locard-Paulet
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Cyril Noël
- IFREMER-IRSI-Service de Bioinformatique (SeBiMER), Centre Bretagne, Plouzane, France
| | - Magalie Duchateau
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
- Institut Pasteur, Université de Paris, Department of Computation Biology, Bioinformatics and Biostatistics Hub, Paris, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science; Doctoral School Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Yann Hechard
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Mariette Matondo
- Institut Pasteur, Université de Paris, Proteomics Platform, Mass Spectrometry for Biology Unit, UAR2024, CNRS 2000, Paris, France
| | - Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS, 7267, Poitiers, France.
| |
Collapse
|
4
|
He C, Guo J, Tian W, Wong CCL. Proteogenomics Integrating Novel Junction Peptide Identification Strategy Discovers Three Novel Protein Isoforms of Human NHSL1 and EEF1B2. J Proteome Res 2021; 20:5294-5303. [PMID: 34420305 DOI: 10.1021/acs.jproteome.1c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In eukaryotes, alternative pre-mRNA splicing allows a single gene to encode different protein isoforms that function in many biological processes, and they are used as biomarkers or therapeutic targets for diseases. Although protein isoforms in the human genome are well annotated, we speculate that some low-abundance protein isoforms may still be under-annotated because most genes have a primary coding product and alternative protein isoforms tend to be under-expressed. A peptide coencoded by a novel exon and an annotated exon separated by an intron is known as a novel junction peptide. In the absence of known transcripts and homologous proteins, traditional whole-genome six-frame translation-based proteogenomics cannot identify novel junction peptides, and it cannot capture novel alternative splice sites. In this article, we first propose a strategy and tool for identifying novel junction peptides, called CJunction, which we then integrate into a proteogenomics process specifically designed for novel protein isoform discovery and apply to the analysis of a deep-coverage HeLa mass spectrometry data set with identifier PXD004452 in ProteomeXchange. We succeeded in identifying and validating three novel protein isoforms of two functionally important genes, NHSL1 (causative gene of Nance-Horan syndrome) and EEF1B2 (translation elongation factor), which validate our hypothesis. These novel protein isoforms have significant sequence differences from the annotated gene-coding products introduced by the novel N-terminal, suggesting that they may play importantly different functions.
Collapse
Affiliation(s)
- Cuitong He
- Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China.,Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 100191 Beijing, China
| | - Jiangtao Guo
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 100191 Beijing, China
| | - Wenmin Tian
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 100191 Beijing, China.,School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China
| | - Catherine C L Wong
- Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China.,Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, 100191 Beijing, China.,School of Basic Medical Sciences, Peking University Health Science Center, 100191 Beijing, China.,Peking University First Hospital, 100034 Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069 Beijing, China
| |
Collapse
|
5
|
González-Gomariz J, Serrano G, Tilve-Álvarez CM, Corrales FJ, Guruceaga E, Segura V. UPEFinder: A Bioinformatic Tool for the Study of Uncharacterized Proteins Based on Gene Expression Correlation and the PageRank Algorithm. J Proteome Res 2020; 19:4795-4807. [PMID: 33155801 DOI: 10.1021/acs.jproteome.0c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Human Proteome Project (HPP) is leading the international effort to characterize the human proteome. Although the main goal of this project was first focused on the detection of missing proteins, a new challenge arose from the need to assign biological functions to the uncharacterized human proteins and describe their implications in human diseases. Not only the proteins with experimental evidence (uPE1 proteins) but also the uncharacterized missing proteins (uMPs) were the objects of study in this challenge, neXt-CP50. In this work, we developed a new bioinformatic approach to infer biological annotations for the uPE1 proteins and uMPs based on a "guilt-by-association" analysis using public RNA-Seq data sets. We used the correlation of these proteins with the well-characterized PE1 proteins to construct a network. In this way, we applied the PageRank algorithm to this network to identify the most relevant nodes, which were the biological annotations of the uncharacterized proteins. All of the generated information was stored in a database. In addition, we implemented the web application UPEFinder (https://upefinder.proteored.org) to facilitate the access to this new resource. This information is especially relevant for the researchers of the HPP who are interested in the generation and validation of new hypotheses about the functions of these proteins. Both the database and the web application are publicly available (https://github.com/ubioinformat/UPEfinder).
Collapse
Affiliation(s)
| | - Guillermo Serrano
- Bioinformatics Platform, CIMA University of Navarra, Pamplona E-31008, Spain
| | - Carlos M Tilve-Álvarez
- Fundación Profesor Nóvoa-Santos, Instituto de Investigación Biomédica da Coruña, Coruña E-15006, Spain
| | - Fernando J Corrales
- Proteomics Unit, National Center for Biotechnology, CSIC, Madrid E-28049, Spain
| | - Elizabeth Guruceaga
- IdiSNA, Navarra Institute for Health Research, Pamplona E-31008, Spain.,Bioinformatics Platform, CIMA University of Navarra, Pamplona E-31008, Spain
| | - Victor Segura
- Tracasa Instrumental, Sarriguren E-31621, Spain.,Sección de Ingeniería del Dato, Dirección General de Telecomunicaciones y Digitalización, Gobierno de Navarra, Sarriguren E-31621, Spain
| |
Collapse
|
6
|
Neagu M, Bostan M, Constantin C. Protein microarray technology: Assisting personalized medicine in oncology (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2019. [DOI: 10.3892/wasj.2019.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Monica Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Marinela Bostan
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|