1
|
Carvalho LN, Peres LC, Alonso-Goulart V, Santos BJD, Braga MFA, Campos FDAR, Palis GDAP, Quirino LS, Guimarães LD, Lafetá SA, Simbara MMO, Castro-Filice LDS. Recent advances in the 3D skin bioprinting for regenerative medicine: Cells, biomaterials, and methods. J Biomater Appl 2024; 39:421-438. [PMID: 39196759 DOI: 10.1177/08853282241276799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The skin is a tissue constantly exposed to the risk of damage, such as cuts, burns, and genetic disorders. The standard treatment is autograft, but it can cause pain to the patient being extremely complex in patients suffering from burns on large body surfaces. Considering that there is a need to develop technologies for the repair of skin tissue like 3D bioprinting. Skin is a tissue that is approximately 1/16 of the total body weight and has three main layers: epidermis, dermis, and hypodermis. Therefore, there are several studies using cells, biomaterials, and bioprinting for skin regeneration. Here, we provide an overview of the structure and function of the epidermis, dermis, and hypodermis, and showed in the recent research in skin regeneration, the main cells used, biomaterials studied that provide initial support for these cells, allowing the growth and formation of the neotissue and general characteristics, advantages and disadvantages of each methodology and the landmarks in recent research in the 3D skin bioprinting.
Collapse
Affiliation(s)
- Loyna Nobile Carvalho
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Lucas Correia Peres
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Vivian Alonso-Goulart
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Mário Fernando Alves Braga
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Gabriela de Aquino Pinto Palis
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Ludmilla Sousa Quirino
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Laura Duarte Guimarães
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | - Sofia Alencar Lafetá
- Laboratory of Nanobiotechnology Prof. Dr Luiz Ricardo Goulart Filho, Institute of Biotechnology (IBTEC), Federal University of Uberlândia, Uberlândia, Brazil
| | | | | |
Collapse
|
2
|
Du W, Wang Z, Han M, Zheng Y, Tao B, Pan N, Bao G, Zhuang W, Quan R. Astragalus polysaccharide-containing 3D-printed scaffold for traumatized skin repair and proteomic study. J Cell Mol Med 2024; 28:e70023. [PMID: 39158533 PMCID: PMC11331928 DOI: 10.1111/jcmm.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
Astragalus polysaccharide-containing 3D-printed scaffold shows great potential in traumatic skin repair. This study aimed to investigate its repairing effect and to combine it with proteomic technology to deeply resolve the related protein expression changes. Thirty SD rats were divided randomly into three groups (n = 10 per group): the sham-operated group, the model group and the scaffold group. Subsequently, we conducted a comparative analysis on trauma blood perfusion, trauma healing rate, histological changes, the expression of the YAP/TAZ signalling pathway and angiogenesis-related factors. Additionally, neonatal skin tissues were collected for proteomic analysis. The blood perfusion volume and wound healing recovery in the scaffold group were better than that in the model group (p < 0.05). The protein expression of STAT3, YAP, TAZ and expression of vascular-related factor A (VEGFA) in the scaffold group was higher than that in the model group (p < 0.05). Proteomic analysis showed that there were 207 differential proteins common to the three groups. Mitochondrial function, immune response, redox response, extracellular gap and ATP metabolic process were the main groups of differential protein changes. Oxidative phosphorylation, metabolic pathway, carbon metabolism, calcium signalling pathway, etc. were the main differential metabolic pathway change groups. Astragalus polysaccharide-containing 3D-printed scaffold had certain reversals of protein disorder. The Astragalus polysaccharide-containing 3D-printed scaffold may promote the VEGFs by activating the YAP/TAZ signalling pathway with the help of STAT3 into the nucleus, accelerating early angiogenesis of the trauma, correcting the protein disorder of the trauma and ultimately realizing the repair of the wound.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Zhenwei Wang
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Meichun Han
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Yang Zheng
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Bowen Tao
- Health Science Center, Ningbo UniversityNingboZhejiangChina
| | - Ningfang Pan
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Guanai Bao
- Pain and Rehabilitation MedicineZhejiang Cancer HospitalHangzhouZhejiangChina
| | - Wei Zhuang
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Renfu Quan
- Research Institute of OrthopedicsThe Jiangnan Hospital affiliated to Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineHangzhouZhejiangChina
| |
Collapse
|
3
|
Li R, Wang C, Gou L, Zhou Y, Peng L, Liu F, Zhang Y. Potential mechanism of the AgNCs-hydrogel in promoting the regeneration of diabetic infectious wounds. Analyst 2023; 148:5873-5881. [PMID: 37908193 DOI: 10.1039/d3an01569f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diabetic infectious wound treatment is challenging due to insistent wound infections. To treat such complicated pathological diabetic infectious wounds, multifunctional materials need to be developed, and their mechanisms need to be understood. Here, we developed a material termed AgNCs-hydrogel, which is a multifunctional DNA hydrogel used as dressings by integrating it with antibacterial silver nanoclusters. The AgNCs-hydrogel was applied to promote the regeneration of diabetic infectious wounds in mice because it exhibited superior antibacterial activity and effective ROS-scavenging properties. Based on skin proteomics, we explored the potential mechanism of the AgNCs-hydrogel in treating mouse skin wounds. We found that the AgNCs-hydrogel can regulate some key proteins located primarily in the extracellular exosomes, involved in the negative regulation of the apoptotic process, and perform ATP binding to accelerate diabetic infected wound closure. Therefore, this study provided a multifunctional AgNCs-hydrogel and revealed its potential mechanism in promoting the regeneration of diabetic infectious wounds.
Collapse
Affiliation(s)
- Ruoqing Li
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
| | - Chengshi Wang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Gou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Zhou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linrui Peng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Zhang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, 400014, China
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Titmarsh HF, von Kriegsheim A, Wills JC, O’Connor RA, Dhaliwal K, Frame MC, Pattle SB, Dorward DA, Byron A, Akram AR. Quantitative proteomics identifies tumour matrisome signatures in patients with non-small cell lung cancer. Front Oncol 2023; 13:1194515. [PMID: 37397358 PMCID: PMC10313119 DOI: 10.3389/fonc.2023.1194515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.
Collapse
Affiliation(s)
- Helen F. Titmarsh
- The EPSRC and MRC Centre for Doctoral Training in Optical Medical Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi C. Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Margaret C. Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel B. Pattle
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Dorward
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Holm Nielsen S, Port H, Møller Hausgaard C, Holm JG, Thyssen JP, Groen SS, Karsdal M, Nielsen VW, Egeberg A, Bay-Jensen AC, Thomsen SF. A fragment of type VI collagen alpha-6 chain is elevated in serum from patients with atopic dermatitis, psoriasis, hidradenitis suppurativa, systemic lupus erythematosus and melanoma. Sci Rep 2023; 13:3056. [PMID: 36810294 PMCID: PMC9945456 DOI: 10.1038/s41598-023-28746-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Extracellular matrix (ECM) remodeling of the skin is a continuous process necessary for maintaining tissue homeostasis. Type VI collagen (COL6) is characterized as a beaded filament, located in the dermal ECM, where COL6-α6-chain has been demonstrated upregulated in atopic dermatitis. The aim of this study was to develop and validate a competitive ELISA, targeting the N-terminal of COL6-α6-chain, named C6A6, and evaluate its associations with the dermatological condition's atopic dermatitis, psoriasis, hidradenitis suppurativa, systemic lupus erythematosus, systemic sclerosis, urticaria, vitiligo, and cutaneous malignant melanoma in comparison, to healthy controls. A monoclonal antibody was raised and employed in an ELISA assay. The assay was developed, technically validated, and evaluated in two independent patient cohorts. Cohort 1 showed C6A6 was significantly elevated in patients with atopic dermatitis (p < 0.0001), psoriasis (p < 0.0001), hidradenitis suppurativa (p = 0.0095), systemic lupus erythematosus (p = 0.0032) and melanoma (p < 0.0001) compared to healthy donors. Cohort 2 confirmed C6A6 being upregulated in atopic dermatitis compared to healthy controls (p < 0.0001), but also associated with disease severity (SCORAD, p = 0.046) and lowered in patients receiving calcineurin inhibitors (p = 0.014). These findings are hypothesis generating, and the utility of the C6A6 biomarker for disease severity and treatment response needs to be validated in larger cohorts and longitudinal studies.
Collapse
Affiliation(s)
- Signe Holm Nielsen
- Immunoscience, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| | - Helena Port
- Immunoscience, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jacob P Thyssen
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Solveig Skovlund Groen
- Immunoscience, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Karsdal
- Immunoscience, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | | | - Alexander Egeberg
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Simon Francis Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Benoit I, Burty-Valin E, Radman M. A Proteome-Centric View of Ageing, including that of the Skin and Age-Related Diseases: Considerations of a Common Cause and Common Preventative and Curative Interventions. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2023; 16:79-85. [PMID: 36660191 PMCID: PMC9842513 DOI: 10.2147/ccid.s397751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
The proteome comprises all proteins of a cell or organism. To carry their catalytic and structure-related functions, proteins must be correctly folded into their unique native three-dimensional structures. Common oxidative protein damage affects their functionality by impairing their catalytic and interactive specificities. Oxidative damage occurs preferentially to misfolded proteins and fixes the misfolded state. This review provides an overview of the mechanism and consequences of oxidative proteome damage - specifically irreversible protein carbonylation - in relation to ageing, including that of the skin as well as to age-related degeneration and diseases (ARDD) and their mitigation. A literature review of published manuscripts, available from PubMed, focusing on proteome, proteostasis, proteotoxicity, protein carbonylation, related inflammatory diseases, ARDD and the impact of the damaged proteome on ageing. During ageing, proteome damage, especially protein carbonylation, correlates with biological age. Carbonylated proteins form aggregates which can be considered as markers and accelerators of ageing and are common markers of most ARDD. Protein carbonylation leads to general ageing of the organism and organs including the skin and potentially to diseases including Alzheimer and Parkinson disease, diabetes, psoriasis, and skin cancer. Current research is promising and may open new therapeutic approaches and perspectives by targeting proteome protection as an age and ARDD management strategy.
Collapse
Affiliation(s)
- Isabelle Benoit
- Medical Relations, NAOS-ILS, Aix-en-Provence, France,Correspondence: Isabelle Benoit, NAOS-ILS, Aix-en-Provence, 13593, France, Tel +33442163060, Email
| | | | - Miroslav Radman
- Faculté de Médecine, INSERM U1001, Université R.-Descartes Paris-5, Paris, France,Scientific Affairs, Mediterranean Institute for Life Science, Split, Croatia
| |
Collapse
|
7
|
Wang K, Wen D, Xu X, Zhao R, Jiang F, Yuan S, Zhang Y, Gao Y, Li Q. Extracellular matrix stiffness-The central cue for skin fibrosis. Front Mol Biosci 2023; 10:1132353. [PMID: 36968277 PMCID: PMC10031116 DOI: 10.3389/fmolb.2023.1132353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Skin fibrosis is a physiopathological process featuring the excessive deposition of extracellular matrix (ECM), which is the main architecture that provides structural support and constitutes the microenvironment for various cellular behaviors. Recently, increasing interest has been drawn to the relationship between the mechanical properties of the ECM and the initiation and modulation of skin fibrosis, with the engagement of a complex network of signaling pathways, the activation of mechanosensitive proteins, and changes in immunoregulation and metabolism. Simultaneous with the progression of skin fibrosis, the stiffness of ECM increases, which in turn perturbs mechanical and humoral homeostasis to drive cell fate toward an outcome that maintains and enhances the fibrosis process, thus forming a pro-fibrotic "positive feedback loop". In this review, we highlighted the central role of the ECM and its dynamic changes at both the molecular and cellular levels in skin fibrosis. We paid special attention to signaling pathways regulated by mechanical cues in ECM remodeling. We also systematically summarized antifibrotic interventions targeting the ECM, hopefully enlightening new strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Kang Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Feipeng Jiang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shengqin Yuan
- School of Public Administration, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yifan Zhang, ; Ya Gao, ; Qingfeng Li,
| |
Collapse
|
8
|
Salazar J, Carmona T, Zacconi FC, Venegas-Yazigi D, Cabello-Verrugio C, Il Choi W, Vilos C. The Human Dermis as a Target of Nanoparticles for Treating Skin Conditions. Pharmaceutics 2022; 15:10. [PMID: 36678639 PMCID: PMC9860843 DOI: 10.3390/pharmaceutics15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Skin has a preventive role against any damage raised by harmful microorganisms and physical and chemical assaults from the external environment that could affect the body's internal organs. Dermis represents the main section of the skin, and its contribution to skin physiology is critical due to its diverse cellularity, vasculature, and release of molecular mediators involved in the extracellular matrix maintenance and modulation of the immune response. Skin structure and complexity limit the transport of substances, promoting the study of different types of nanoparticles that penetrate the skin layers under different mechanisms intended for skin illness treatments and dermo-cosmetic applications. In this work, we present a detailed morphological description of the dermis in terms of its structures and resident cells. Furthermore, we analyze the role of the dermis in regulating skin homeostasis and its alterations in pathophysiological conditions, highlighting its potential as a therapeutic target. Additionally, we describe the use of nanoparticles for skin illness treatments focused on dermis release and promote the use of metal-organic frameworks (MOFs) as an integrative strategy for skin treatments.
Collapse
Affiliation(s)
- Javier Salazar
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
| | - Thais Carmona
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química “Andrés M. Del Rio” (IQAR), Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
- Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 9170022, Chile
| | - Flavia C. Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| | - Diego Venegas-Yazigi
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Materials Chemistry Department, Faculty of Chemistry and Biology, University of Santiago of Chile (USACH), Santiago 9170022, Chile
| | - Claudio Cabello-Verrugio
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370035, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370035, Chile
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Republic of Korea
| | - Cristian Vilos
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 8350709, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
9
|
Guvatova ZG, Borisov PV, Alekseev AA, Moskalev AA. Age-Related Changes in Extracellular Matrix. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1535-1551. [PMID: 36717445 DOI: 10.1134/s0006297922120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Extracellular matrix (ECM) is an extracellular tissue structure that, in addition to mechanical support to the cell, is involved in regulation of many cellular processes, including chemical transport, growth, migration, differentiation, and cell senescence. Age-related changes in the structure and composition of the matrix and increase of ECM stiffness with age affect functioning of many tissues and contribute to the development of various pathological conditions. This review considers age-related changes of ECM in various tissues and organs, in particular, effect of ECM changes on aging is discussed.
Collapse
Affiliation(s)
- Zulfiia G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, 129226, Russia
| | - Pavel V Borisov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexey A Alekseev
- Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, 129226, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia. .,Russian Clinical Research Center for Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, Moscow, 129226, Russia
| |
Collapse
|
10
|
Phang SJ, Basak S, Teh HX, Packirisamy G, Fauzi MB, Kuppusamy UR, Neo YP, Looi ML. Advancements in Extracellular Matrix-Based Biomaterials and Biofabrication of 3D Organotypic Skin Models. ACS Biomater Sci Eng 2022; 8:3220-3241. [PMID: 35861577 DOI: 10.1021/acsbiomaterials.2c00342] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decades, three-dimensional (3D) organotypic skin models have received enormous attention as alternative models to in vivo animal models and in vitro two-dimensional assays. To date, most organotypic skin models have an epidermal layer of keratinocytes and a dermal layer of fibroblasts embedded in an extracellular matrix (ECM)-based biomaterial. The ECM provides mechanical support and biochemical signals to the cells. Without advancements in ECM-based biomaterials and biofabrication technologies, it would have been impossible to create organotypic skin models that mimic native human skin. In this review, the use of ECM-based biomaterials in the reconstruction of skin models, as well as the study of complete ECM-based biomaterials, such as fibroblasts-derived ECM and decellularized ECM as a better biomaterial, will be highlighted. We also discuss the benefits and drawbacks of several biofabrication processes used in the fabrication of ECM-based biomaterials, such as conventional static culture, electrospinning, 3D bioprinting, and skin-on-a-chip. Advancements and future possibilities in modifying ECM-based biomaterials to recreate disease-like skin models will also be highlighted, given the importance of organotypic skin models in disease modeling. Overall, this review provides an overview of the present variety of ECM-based biomaterials and biofabrication technologies available. An enhanced organotypic skin model is expected to be produced in the near future by combining knowledge from previous experiences and current research.
Collapse
Affiliation(s)
- Shou Jin Phang
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soumyadeep Basak
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Huey Xhin Teh
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247 667, Uttarakhand, India
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Mee Lee Looi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Li J, Ma J, Zhang Q, Gong H, Gao D, Wang Y, Li B, Li X, Zheng H, Wu Z, Zhu Y, Leng L. Spatially resolved proteomic map shows that extracellular matrix regulates epidermal growth. Nat Commun 2022; 13:4012. [PMID: 35817779 PMCID: PMC9273758 DOI: 10.1038/s41467-022-31659-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Human skin comprises stratified squamous epithelium and dermis with various stromal cells and the extracellular matrix (ECM). The basement membrane (BM), a thin layer at the top of the dermis, serves as a unique niche for determining the fate of epidermal stem cells (EpSCs) by transmitting physical and biochemical signals to establish epidermal cell polarity and maintain the hierarchical structure and function of skin tissue. However, how stem cell niches maintain tissue homeostasis and control wound healing by regulating the behavior of EpSCs is still not completely understood. In this study, a hierarchical skin proteome map is constructed using spatial quantitative proteomics combined with decellularization, laser capture microdissection, and mass spectrometry. The specific functions of different structures of normal native skin tissues or tissues with a dermatologic disease are analyzed in situ. Transforming growth factor-beta (TGFβ)-induced protein ig-h3 (TGFBI), an ECM glycoprotein, in the BM is identified that could enhance the growth and function of EpSCs and promote wound healing. Our results provide insights into the way in which ECM proteins facilitate the growth and function of EpSCs as part of an important niche. The results may benefit the clinical treatment of skin ulcers or diseases with refractory lesions that involve epidermal cell dysfunction and re-epithelialization block in the future. Ling Leng et al. construct a hierarchical skin proteome map and identify an extracellular matrix glycoprotein TGFBI, which is located in basement membrane and could enhance the growth and function of epidermal stem cells and promote wound healing.
Collapse
Affiliation(s)
- Jun Li
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Qiyu Zhang
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huizi Gong
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Wang
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biyou Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.,Basic Medical School, Anhui Medical University, Anhui, China
| | - Xiao Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Heyi Zheng
- Department of Dermatology and Venereology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China. .,Basic Medical School, Anhui Medical University, Anhui, China.
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Harvey N, Youssefian L, Saeidian AH, Vahidnezhad H, Uitto J. Pathomechanisms of epidermolysis bullosa: Beyond structural proteins. Matrix Biol 2022; 110:91-105. [DOI: 10.1016/j.matbio.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
13
|
Dussoyer M, Page A, Delolme F, Rousselle P, Nyström A, Moali C. Comparison of extracellular matrix enrichment protocols for the improved characterization of the skin matrisome by mass spectrometry. J Proteomics 2022; 251:104397. [PMID: 34678517 DOI: 10.1016/j.jprot.2021.104397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022]
Abstract
A striking feature of skin organization is that the extracellular matrix (ECM) occupies a larger volume than the cells. Skin ECM also directly contributes to aging and most cutaneous diseases. In recent years, specific ECM enrichment protocols combined with in silico approaches allowed the proteomic description of the matrisome of various organs and tumor samples. Nevertheless, the skin matrisome remains under-studied and protocols allowing the efficient recovery of the diverse ECM found in skin are still to be described. Here, we compared four protocols allowing the enrichment of ECM proteins from adult mouse back skin and found that all protocols led to a significant enrichment (up to 65%) of matrisome proteins when compared to total skin lysates. The protocols based on decellularization and solubility profiling gave the best results in terms of numbers of proteins identified and confirmed that skin matrisome proteins exhibit very diverse solubility and abundance profiles. We also report the first description of the skin matrisome of healthy adult mice that includes 236 proteins comprising 95 core matrisome proteins and 141 associated matrisome proteins. These results provide a reliable basis for future characterizations of skin ECM proteins and their dysregulations in disease-specific contexts. SIGNIFICANCE: Extracellular matrix proteins are key players in skin physiopathology and have been involved in several diseases such as genetic disorders, wound healing defects, scleroderma and skin carcinoma. However, skin ECM proteins are numerous, diverse and challenging to analyze by mass spectrometry due to the multiplicity of their post-translational modifications and to the heterogeneity of their solubility profiles. Here, we performed the thorough evaluation of four ECM enrichment protocols compatible with the proteomic analysis of mouse back skin and provide the first description of the adult mouse skin matrisome in homeostasis conditions. Our work will greatly facilitate the future characterization of skin ECM alterations in preclinical mouse models and will inspire new optimizations to analyze the skin matrisome of other species and of human clinical samples.
Collapse
Affiliation(s)
- Mélissa Dussoyer
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Adeline Page
- University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Frédéric Delolme
- University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Patricia Rousselle
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Alexander Nyström
- Department of Clinical Dermatology/Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Catherine Moali
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France.
| |
Collapse
|
14
|
Scaffold-free 3D cell culture of primary skin fibroblasts induces profound changes of the matrisome. Matrix Biol Plus 2021; 11:100066. [PMID: 34435183 PMCID: PMC8377039 DOI: 10.1016/j.mbplus.2021.100066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
The human skin has a highly developed extracellular matrix (ECM) that is vital for proper skin functioning, its 3D architecture playing a pivotal role in support and guidance of resident and invading cells. To establish relevant in vitro models mimicking the complex design observed in vivo, scaffold-based and scaffold-free 3D cell culture systems have been developed. Here we show that scaffold-free systems are well suited for the analysis of ECM protein regulation. Using quantitative mass spectrometry-based proteomics in combination with magnetic 3D bioprinting we characterize changes in the proteome of skin fibroblasts and squamous cell carcinoma cells. Transferring cells from 2D to 3D without any additional scaffold induces a profound upregulation of matrisome proteins indicating the generation of a complex, tissue-like ECM.
Collapse
|
15
|
Dyring-Andersen B, Løvendorf MB, Coscia F, Santos A, Møller LBP, Colaço AR, Niu L, Bzorek M, Doll S, Andersen JL, Clark RA, Skov L, Teunissen MBM, Mann M. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat Commun 2020; 11:5587. [PMID: 33154365 PMCID: PMC7645789 DOI: 10.1038/s41467-020-19383-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Human skin provides both physical integrity and immunological protection from the external environment using functionally distinct layers, cell types and extracellular matrix. Despite its central role in human health and disease, the constituent proteins of skin have not been systematically characterized. Here, we combine advanced tissue dissection methods, flow cytometry and state-of-the-art proteomics to describe a spatially-resolved quantitative proteomic atlas of human skin. We quantify 10,701 proteins as a function of their spatial location and cellular origin. The resulting protein atlas and our initial data analyses demonstrate the value of proteomics for understanding cell-type diversity within the skin. We describe the quantitative distribution of structural proteins, known and previously undescribed proteins specific to cellular subsets and those with specialized immunological functions such as cytokines and chemokines. We anticipate that this proteomic atlas of human skin will become an essential community resource for basic and translational research ( https://skin.science/ ).
Collapse
Affiliation(s)
- Beatrice Dyring-Andersen
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA.,Leo Foundation Skin Immunology Research Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Dermatology and Allergology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | - Fabian Coscia
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alberto Santos
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Line Bruun Pilgaard Møller
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ana R Colaço
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lili Niu
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Bzorek
- Department of Surgical Pathology, Zealand University Hospital, Næstved, Denmark
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jørgen Lock Andersen
- Department of Plastic and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Lone Skov
- Department of Dermatology and Allergology, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Marcel B M Teunissen
- Department of Dermatology, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
| | - Matthias Mann
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|