1
|
Edsjö A, Holmquist L, Geoerger B, Nowak F, Gomon G, Alix-Panabières C, Ploeger C, Lassen U, Le Tourneau C, Lehtiö J, Ott PA, von Deimling A, Fröhling S, Voest E, Klauschen F, Dienstmann R, Alshibany A, Siu LL, Stenzinger A. Precision cancer medicine: Concepts, current practice, and future developments. J Intern Med 2023; 294:455-481. [PMID: 37641393 DOI: 10.1111/joim.13709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Precision cancer medicine is a multidisciplinary team effort that requires involvement and commitment of many stakeholders including the society at large. Building on the success of significant advances in precision therapy for oncological patients over the last two decades, future developments will be significantly shaped by improvements in scalable molecular diagnostics in which increasingly complex multilayered datasets require transformation into clinically useful information guiding patient management at fast turnaround times. Adaptive profiling strategies involving tissue- and liquid-based testing that account for the immense plasticity of cancer during the patient's journey and also include early detection approaches are already finding their way into clinical routine and will become paramount. A second major driver is the development of smart clinical trials and trial concepts which, complemented by real-world evidence, rapidly broaden the spectrum of therapeutic options. Tight coordination with regulatory agencies and health technology assessment bodies is crucial in this context. Multicentric networks operating nationally and internationally are key in implementing precision oncology in clinical practice and support developing and improving the ecosystem and framework needed to turn invocation into benefits for patients. The review provides an overview of the diagnostic tools, innovative clinical studies, and collaborative efforts needed to realize precision cancer medicine.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Genomic Medicine Sweden (GMS), Kristianstad, Sweden
| | - Louise Holmquist
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Genomic Medicine Sweden (GMS), Kristianstad, Sweden
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | | | - Georgy Gomon
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, Montpellier, France
| | - Carolin Ploeger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Ulrik Lassen
- Department of Oncology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christophe Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
- INSERM U900 Research Unit, Saint-Cloud, France
- Faculty of Medicine, Paris-Saclay University, Paris, France
| | - Janne Lehtiö
- Department of Oncology Pathology, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Emile Voest
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frederick Klauschen
- Institute of Pathology, Charite - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Munich Partner Site, Heidelberg, Germany
| | | | | | - Lillian L Siu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
| |
Collapse
|
2
|
Kazdal D, Menzel M, Budczies J, Stenzinger A. [Molecular tumor diagnostics as the driving force behind precision oncology]. Dtsch Med Wochenschr 2023; 148:1157-1165. [PMID: 37657453 DOI: 10.1055/a-1937-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Molecular pathological diagnostics plays a central role in personalized oncology and requires multidisciplinary teamwork. It is just as relevant for the individual patient who is being treated with an approved therapy method or an individual treatment attempt as it is for prospective clinical studies that require the identification of specific therapeutic target structures or complex biomarkers for study inclusion. It is also of crucial importance for the generation of real-world data, which is becoming increasingly important for drug development. Future developments will be significantly shaped by improvements in scalable molecular diagnostics, in which increasingly complex and multi-layered data sets must be quickly converted into clinically useful information. One focus will be on the development of adaptive diagnostic strategies in order to be able to depict the enormous plasticity of a cancer disease over time.
Collapse
|
3
|
Bakare OO, Gokul A, Niekerk LA, Aina O, Abiona A, Barker AM, Basson G, Nkomo M, Otomo L, Keyster M, Klein A. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides. Int J Mol Sci 2023; 24:11864. [PMID: 37511621 PMCID: PMC10380191 DOI: 10.3390/ijms241411864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases are constantly evolving to bypass antibiotics or create resistance against them. There is a piercing alarm for the need to improve the design of new effective antimicrobial agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity. This would guard public health in combating and overcoming stubborn pathogens and mitigate incurable diseases; however, the emergence of antimicrobial peptides' shortcomings ranging from untimely degradation by enzymes to difficulty in the design against specific targets is a major bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices, synthesis and characterization, their doping and coating, and the shortfall of these approaches. This review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The knowledge from this development would guide the future design of these novel peptides and allow the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment regimens in patients to enable them to have accommodating lifestyles.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ademola Abiona
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Mbukeni Nkomo
- Department of Botany, H13 Botany Building, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Laetitia Otomo
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
4
|
Sun J, Li Q, Ding Y, Wei D, Hadisurya M, Luo Z, Gu Z, Chen B, Tao WA. Profiling Phosphoproteome Landscape in Circulating Extracellular Vesicles from Microliters of Biofluids through Functionally Tunable Paramagnetic Separation. Angew Chem Int Ed Engl 2023; 62:e202305668. [PMID: 37216424 PMCID: PMC11019431 DOI: 10.1002/anie.202305668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Many biological processes are regulated through dynamic protein phosphorylation. Monitoring disease-relevant phosphorylation events in circulating biofluids is highly appealing but also technically challenging. We introduce here a functionally tunable material and a strategy, extracellular vesicles to phosphoproteins (EVTOP), which achieves one-pot extracellular vesicles (EVs) isolation, extraction, and digestion of EV proteins, and enrichment of phosphopeptides, with only a trace amount of starting biofluids. EVs are efficiently isolated by magnetic beads functionalized with TiIV ions and a membrane-penetrating peptide, octa-arginine R8 + , which also provides the hydrophilic surface to retain EV proteins during lysis. Subsequent on-bead digestion concurrently converts EVTOP to TiIV ion-only surface for efficient enrichment of phosphopeptides for phosphoproteomic analyses. The streamlined, ultra-sensitive platform enabled us to quantify 500 unique EV phosphopeptides with only a few μL of plasma and over 1200 phosphopeptides with 100 μL of cerebrospinal fluid (CSF). We explored its clinical application of monitoring the outcome of chemotherapy of primary central nervous system lymphoma (PCNSL) patients with a small volume of CSF, presenting a powerful tool for broad clinical applications.
Collapse
Affiliation(s)
- Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Qing Li
- Department of Hematology, Huashan Hospital, Shanghai, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Marco Hadisurya
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| | - Zhuojun Luo
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Shanghai, China
| | - W. Andy Tao
- Department of Biochemistry, Department of Biochemistry, Purdue University, West Lafayette, IN 47907; Institute for Cancer ResearchPurdue University West Lafayette, IN47907
| |
Collapse
|
5
|
Lesur A, Bernardin F, Koncina E, Letellier E, Kruppa G, Schmit PO, Dittmar G. Quantification of 782 Plasma Peptides by Multiplexed Targeted Proteomics. J Proteome Res 2023. [PMID: 37011904 DOI: 10.1021/acs.jproteome.2c00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Blood analysis is one of the foundations of clinical diagnostics. In recent years, the analysis of proteins in blood samples by mass spectrometry has taken a jump forward in terms of sensitivity and the number of identified proteins. The recent development of parallel reaction monitoring with parallel accumulation and serial fragmentation (prm-PASEF) combines ion mobility as an additional separation dimension. This increases the proteome coverage while allowing the use of shorter chromatographic gradients. To demonstrate the method's full potential, we used an isotope-labeled synthetic peptide mix of 782 peptides, derived from 579 plasma proteins, spiked into blood plasma samples with a prm-PASEF measurement allowing the quantification of 565 plasma proteins by targeted proteomics. As a less time-consuming alternative to the prm-PASEF method, we describe guided data independent acquisition (dia)-PASEF (g-dia-PASEF) and compare its application to prm-PASEF for measuring blood plasma. To demonstrate both methods' performance in clinical samples, 20 patient plasma samples from a colorectal cancer (CRC) cohort were analyzed. The analysis identified 14 differentially regulated proteins between the CRC patient and control individual plasma samples. This shows the technique's potential for the rapid and unbiased screening of blood proteins, abolishing the need for the preselection of potential biomarker proteins.
Collapse
Affiliation(s)
- Antoine Lesur
- Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | | | - Eric Koncina
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux L-4367, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux L-4367, Luxembourg
| | - Gary Kruppa
- Bruker Daltonics, Billerica, Massachusetts 01821, United States
| | | | - Gunnar Dittmar
- Luxembourg Institute of Health, Strassen L-1445, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux L-4367, Luxembourg
| |
Collapse
|
6
|
High-end ion mobility mass spectrometry: A current review of analytical capacity in omics applications and structural investigations. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Raghunathan R, Turajane K, Wong LC. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23169299. [PMID: 36012563 PMCID: PMC9409485 DOI: 10.3390/ijms23169299] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progressive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high throughput quantitation of thousands of proteins from minimal sample volumes. We review recent proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and PD that identify proteins with potential utility as biomarkers. Further, we review disease-related post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in key biomarker studies in ALS and PD and discuss recent technological advancements which may identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
Collapse
|
8
|
Brzhozovskiy A, Kononikhin A, Bugrova AE, Kovalev GI, Schmit PO, Kruppa G, Nikolaev EN, Borchers CH. The Parallel Reaction Monitoring-Parallel Accumulation-Serial Fragmentation (prm-PASEF) Approach for Multiplexed Absolute Quantitation of Proteins in Human Plasma. Anal Chem 2022; 94:2016-2022. [PMID: 35040635 DOI: 10.1021/acs.analchem.1c03782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mass spectrometry (MS)-based quantitative proteomic methods have become some of the major tools for protein biomarker discovery and validation. The recently developed parallel reaction monitoring-parallel accumulation-serial fragmentation (prm-PASEF) approach on a Bruker timsTOF Pro mass spectrometer allows the addition of ion mobility as a new dimension to LC-MS-based proteomics and increases proteome coverage at a reduced analysis time. In this study, a prm-PASEF approach was used for the multiplexed absolute quantitation of proteins in human plasma using isotope-labeled peptide standards for 125 plasma proteins, over a broad (104-106) dynamic range. Optimization of LC and MS parameters, such as accumulation time and collision energy, resulted in improved sensitivity for more than half of the targets (73 out of 125 peptides) by increasing the signal-to-noise ratio by a factor of up to 10. Overall, 41 peptides showed up to a 2-fold increase in sensitivity, 25 peptides showed up to a 5-fold increase in sensitivity, and 7 peptides showed up to a 10-fold increase in sensitivity. Implementation of the prm-PASEF method allowed absolute protein quantitation (down to 1.13 fmol) in human plasma samples. A comparison of the concentration values of plasma proteins determined by MRM on a QTRAP instrument and by prm-PASEF on a timsTOF Pro revealed an excellent correlation (R2 = 0.97) with a slope of close to 1 (0.99), demonstrating that prm-PASEF is well suited for "absolute" quantitative proteomics.
Collapse
Affiliation(s)
- Alexander Brzhozovskiy
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Alexey Kononikhin
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna E Bugrova
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Grigoriy I Kovalev
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | - Gary Kruppa
- Bruker Daltonics, Inc. Billerica, Massachusetts 018215, United States
| | - Evgeny N Nikolaev
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
9
|
Li W, Zhang Q, Wang X, Wang H, Zuo W, Xie H, Tang J, Wang M, Zeng Z, Cai W, Tang D, Dai Y. Comparative Proteomic Analysis to Investigate the Pathogenesis of Oral Adenoid Cystic Carcinoma. ACS OMEGA 2021; 6:18623-18634. [PMID: 34337202 PMCID: PMC8319923 DOI: 10.1021/acsomega.1c01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 05/25/2023]
Abstract
Adenoid cystic carcinoma (ACC) belongs to salivary gland malignancies commonly occurring in an oral cavity with a poor long-term prognosis. The potential biomarkers and cellular functions acting on local recurrences and distant metastases remain to be illustrated. Proteomics is the core content of precision medicine research, which provides accurate information for early detection of cancer, benign and malignant diagnosis, classification and personalized medication, efficacy monitoring, and prognosis judgment. To obtain a comprehensive regulation network and supply clues for the treatment of oral ACC (OACC), we utilized mass spectrometry-based quantitative proteomics to analyze the protein expression profile in paired tumor and adjacent normal tissues. We identified a total of 40,547 specific peptides and 4454 differentially expressed proteins (DEPs), in which HAPLN1 was the most upregulated protein and BPIFB1 was the most downregulated. Then, we annotated the functions and characteristics of DEPs in detail from the aspects of gene ontology, subcellular structural localization, KEGG, and protein domain to thoroughly understand the identified and quantified proteins. Glycosphingolipid biosynthesis and glycosaminoglycan degradation pathways showed the biggest difference according to KEGG analysis. Moreover, we confirmed 20 proteins from the ECM-receptor signaling pathway by a parallel reaction monitoring quantitative detection and 19 proteins were quantified. This study provides useful insights to analyze DEPs in OACC and guide in-depth thinking of the pathogenesis from a proteomics view for anticancer mechanisms and potential biomarkers.
Collapse
Affiliation(s)
- Wen Li
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Qian Zhang
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Xiaobin Wang
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Hanlin Wang
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Wenxin Zuo
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Hongliang Xie
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Jianming Tang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Mengmeng Wang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Zhipeng Zeng
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Wanxia Cai
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Donge Tang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Yong Dai
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| |
Collapse
|