1
|
De Groote E, Carlyon RP, Deeks JM, Macherey O. Effects of selective stimulation of apical electrodes on temporal pitch perception by cochlear implant recipients. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:2060-2076. [PMID: 39345135 PMCID: PMC11444735 DOI: 10.1121/10.0029023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
This study investigated whether selective apical stimulation improves temporal pitch perception in eight MED-EL cochlear implant recipients and whether any such improvement relates to auditory-nerve survival. Three stimulation conditions differing in the place and width of excitation were evaluated: single-electrode stimulation of (i) the most apical, (ii) a mid-array electrode, and (iii) multi-electrode stimulation of the four most apical electrodes. Stimulation-current-induced non-stimulating electrode voltages were recorded to identify extracochlear electrodes and gauge insertion depth. The pitches of the four most apical electrodes were compared using place-pitch ranking. Rate-pitch ranking was assessed between 80 and 981 pulses per second for the three stimulation conditions, to estimate the "upper limit" of temporal pitch. Single-electrode apical stimulation did not increase the upper limit relative to other conditions. The polarity effect (PE), defined as the difference between thresholds obtained for triphasic pulse trains with their central high-amplitude phase either anodic or cathodic, was obtained to evaluate peripheral neural health. The PE did not differ between apical and mid-array stimulation or correlate with the upper limit. In conclusion, we found no improvement of temporal pitch perception with single-electrode apical stimulation, and discuss possible explanations for this observation.
Collapse
Affiliation(s)
- Evelien De Groote
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| | - Robert P Carlyon
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| | - John M Deeks
- Cambridge Hearing Group, Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, United Kingdom
| | - Olivier Macherey
- Aix Marseille Université, Centre National de la Recherche Scientifique, Centrale Méditerranée, Laboratoire de Mécanique et d'Acoustique, Centre National de la Recherche Scientifique, Aix Marseille Université, Marseille, 13453 Cedex 13, France
| |
Collapse
|
2
|
Callejón-Leblic MA, Lazo-Maestre M, Fratter A, Ropero-Romero F, Sánchez-Gómez S, Reina-Tosina J. A full-head model to investigate intra and extracochlear electric fields in cochlear implant stimulation. Phys Med Biol 2024; 69:155010. [PMID: 38925131 DOI: 10.1088/1361-6560/ad5c38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective.Despite the widespread use and technical improvement of cochlear implant (CI) devices over past decades, further research into the bioelectric bases of CI stimulation is still needed. Various stimulation modes implemented by different CI manufacturers coexist, but their true clinical benefit remains unclear, probably due to the high inter-subject variability reported, which makes the prediction of CI outcomes and the optimal fitting of stimulation parameters challenging. A highly detailed full-head model that includes a cochlea and an electrode array is developed in this study to emulate intracochlear voltages and extracochlear current pathways through the head in CI stimulation.Approach.Simulations based on the finite element method were conducted under monopolar, bipolar, tripolar (TP), and partial TP modes, as well as for apical, medial, and basal electrodes. Variables simulated included: intracochlear voltages, electric field (EF) decay, electric potentials at the scalp and extracochlear currents through the head. To better understand CI side effects such as facial nerve stimulation, caused by spurious current leakage out from the cochlea, special emphasis is given to the analysis of the EF over the facial nerve.Main results.The model reasonably predicts EF magnitudes and trends previously reported in CI users. New relevant extracochlear current pathways through the head and brain tissues have been identified. Simulated results also show differences in the magnitude and distribution of the EF through different segments of the facial nerve upon different stimulation modes and electrodes, dependent on nerve and bone tissue conductivities.Significance.Full-head models prove useful tools to model intra and extracochlear EFs in CI stimulation. Our findings could prove useful in the design of future experimental studies to contrast FNS mechanisms upon stimulation of different electrodes and CI modes. The full-head model developed is freely available for the CI community for further research and use.
Collapse
Affiliation(s)
- M A Callejón-Leblic
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
- Oticon Medical, 28108 Madrid, Spain
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| | - M Lazo-Maestre
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - A Fratter
- Oticon Medical, 06220 Vallauris, France
| | - F Ropero-Romero
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - S Sánchez-Gómez
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - J Reina-Tosina
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| |
Collapse
|
3
|
van Groesen NRA, Briaire JJ, de Jong MAM, Frijns JHM. Dynamic Current Focusing Compared to Monopolar Stimulation in a Take-Home Trial of Cochlear Implant Users. Ear Hear 2023; 44:306-317. [PMID: 36279119 DOI: 10.1097/aud.0000000000001282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES This study compared the performance of a dynamic partial tripolar cochlear implant speech encoding strategy termed dynamic current focusing (DCF) to monopolar stimulation (MP) using spectro-temporal, temporal, and speech-in-noise recognition testing. DESIGN DCF is a strategy that utilizes tripolar or high partial tripolar stimulation at threshold level and increases loudness by slowly widening current spread towards most comfortable level. Thirteen cochlear implant users were fitted with DCF and a non-steered MP matched on pulse rate, pulse width, and active electrodes. Nine participants completed the single-blinded within-subject crossover trial. Repeated testing consisted of four sessions. Strategies were allocated in a DCF-MP-DCF-MP or MP-DCF-MP-DCF design. Three-week adaptation periods ended with a test session in which speech-in-noise recognition (matrix speech-in-noise sentence test), spectro-temporal ripple tests (SMRT and STRIPES) and a temporal amplitude modulation detection test were conducted. All participants recorded their subjective experiences with both strategies using the Speech, Spatial and Qualities of Hearing Scale questionnaire. RESULTS Participants' SMRT thresholds improved 0.40 ripples per octave ( p = 0.02, Bonferroni-corrected: p = 0.1) with DCF over MP at 65 dB SPL. No significant differences between the strategies were found on speech-in-noise recognition at conversational (65 dB SPL) and soft (45 dB SPL) loudness levels, temporal testing, STRIPES, or the SMRT at 45 dB SPL. After Bonferroni correction, a learning effect remained on the matrix speech-in-noise sentence test at both loudness levels (65 dB SPL: p = 0.01; 45 dB SPL: p = 0.02). There was no difference in learning effects over time between DCF and MP. Similarly, no significant differences were found in subjective experience on the Speech, Spatial and Qualities of Hearing Scale questionnaire. DCF reduced average battery life by 48% (5.1 hours) ( p < 0.001) compared to MP. CONCLUSIONS DCF may improve spectral resolution over MP at comfortable loudness (65 dB SPL) in cochlear implant users. However, the evidence collected in this study was weak and the significant result disappeared after Bonferroni correction. Also, not all spectral tests revealed this improvement. As expected, battery life was reduced for DCF. Although the current study is limited by its small sample size, considering previous studies, DCF does not consistently improve speech recognition in noise over MP strategies.
Collapse
Affiliation(s)
| | - Jeroen Johannes Briaire
- Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Monique Anna Maria de Jong
- Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Johannes Hubertus Maria Frijns
- Otorhinolaryngology and Head and Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
4
|
Wang Y, Wu M, Wu K, Liu H, Wu S, Zhang Z, Liu M, Wei C, Zhang YX, Liu Y. Differential auditory cortical development in left and right cochlear implanted children. Cereb Cortex 2022; 32:5438-5454. [PMID: 35165693 DOI: 10.1093/cercor/bhac025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Unilateral aural stimulation has been shown to cause massive cortical reorganization in brain with congenital deafness, particularly during the sensitive period of brain development. However, it is unclear which side of stimulation provides most advantages for auditory development. The left hemisphere dominance of speech and linguistic processing in normal hearing adult brain has led to the assumption of functional and developmental advantages of right over left implantation, but existing evidence is controversial. To test this assumption and provide evidence for clinical choice, we examined 34 prelingually deaf children with unilateral cochlear implants using near-infrared spectroscopy. While controlling for age of implantation, residual hearing, and dominant hand, cortical processing of speech showed neither developmental progress nor influence of implantation side weeks to months after implant activation. In sharp contrast, for nonspeech (music signal vs. noise) processing, left implantation showed functional advantages over right implantation that were not yet discernable using clinical, questionnaire-based outcome measures. These findings support the notion that the right hemisphere develops earlier and is better preserved from adverse environmental influences than its left counterpart. This study thus provides, to our knowledge, the first evidence for differential influences of left and right auditory peripheral stimulation on early cortical development of the human brain.
Collapse
Affiliation(s)
- Yuyang Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Department of Otolaryngology Head and Neck Surgery, Hunan Provincial People's Hospital (First Affiliated Hospital of Hunan Normal University), Changsha 610041, China
| | - Meiyun Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Kun Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Haotian Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Department of Otolaryngology Head and Neck Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shinan Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Zhikai Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.,Department of Otolaryngology Head and Neck Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, China
| | - Min Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Chaogang Wei
- Department of Otolaryngology Head and Neck Surgery, Peking University First Hospital, Beijing 100034, China
| | - Yu-Xuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yuhe Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
5
|
Guérit F, Middlebrooks JC, Richardson ML, Arneja A, Harland AJ, Gransier R, Wouters J, Carlyon RP. Tonotopic Selectivity in Cats and Humans: Electrophysiology and Psychophysics. J Assoc Res Otolaryngol 2022; 23:513-534. [PMID: 35697952 PMCID: PMC9437197 DOI: 10.1007/s10162-022-00851-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/02/2022] [Indexed: 01/06/2023] Open
Abstract
We describe a scalp-recorded measure of tonotopic selectivity, the "cortical onset response" (COR) and compare the results between humans and cats. The COR results, in turn, were compared with psychophysical masked-detection thresholds obtained using similar stimuli and obtained from both species. The COR consisted of averaged responses elicited by 50-ms tone-burst probes presented at 1-s intervals against a continuous noise masker. The noise masker had a bandwidth of 1 or 1/8th octave, geometrically centred on 4000 Hz for humans and on 8000 Hz for cats. The probe frequency was either - 0.5, - 0.25, 0, 0.25 or 0.5 octaves re the masker centre frequency. The COR was larger for probe frequencies more distant from the centre frequency of the masker, and this effect was greater for the 1/8th-octave than for the 1-octave masker. This pattern broadly reflected the masked excitation patterns obtained psychophysically with similar stimuli in both species. However, the positive signal-to-noise ratio used to obtain reliable COR measures meant that some aspects of the data differed from those obtained psychophysically, in a way that could be partly explained by the upward spread of the probe's excitation pattern. Our psychophysical measurements also showed that the auditory filter width obtained at 8000 Hz using notched-noise maskers was slightly wider in cat than previous measures from humans. We argue that although conclusions from COR measures differ in some ways from conclusions based on psychophysics, the COR measures provide an objective, noninvasive, valid measure of tonotopic selectivity that does not require training and that may be applied to acoustic and cochlear-implant experiments in humans and laboratory animals.
Collapse
Affiliation(s)
- Francois Guérit
- grid.5335.00000000121885934Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, England
| | - John C. Middlebrooks
- grid.266093.80000 0001 0668 7243Department of Otolaryngology, University of California at Irvine, Irvine, CA USA
- grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, University of California at Irvine, Irvine, CA USA
- grid.266093.80000 0001 0668 7243Department of Cognitive Sciences, University of California at Irvine, Irvine, CA USA
- grid.266093.80000 0001 0668 7243Department of Biomedical Engineering, University of California at Irvine, Irvine, CA USA
| | - Matthew L. Richardson
- grid.266093.80000 0001 0668 7243Department of Otolaryngology, University of California at Irvine, Irvine, CA USA
| | - Akshat Arneja
- grid.266093.80000 0001 0668 7243Department of Cognitive Sciences, University of California at Irvine, Irvine, CA USA
| | - Andrew J. Harland
- grid.5335.00000000121885934Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, England
| | - Robin Gransier
- Dept. of Neurosciences, ExpORL, Leuven, Louvain, KU Belgium
| | - Jan Wouters
- Dept. of Neurosciences, ExpORL, Leuven, Louvain, KU Belgium
| | - Robert P. Carlyon
- grid.5335.00000000121885934Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, England
| |
Collapse
|
6
|
Heshmat A, Sajedi S, Schrott-Fischer A, Rattay F. Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array. Front Neurosci 2021; 15:751599. [PMID: 34955717 PMCID: PMC8692583 DOI: 10.3389/fnins.2021.751599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022] Open
Abstract
Neural health is of great interest to determine individual degeneration patterns for improving speech perception in cochlear implant (CI) users. Therefore, in recent years, several studies tried to identify and quantify neural survival in CI users. Among all proposed techniques, polarity sensitivity is a promising way to evaluate the neural status of auditory nerve fibers (ANFs) in CI users. Nevertheless, investigating neural health based on polarity sensitivity is a challenging and complicated task that involves various parameters, and the outcomes of many studies show contradictory results of polarity sensitivity behavior. Our computational study benefits from an accurate three-dimensional finite element model of a human cochlea with realistic human ANFs and determined ANF degeneration pattern of peripheral part with a diminishing of axon diameter and myelination thickness based on degeneration levels. In order to see how different parameters may impact the polarity sensitivity behavior of ANFs, we investigated polarity behavior under the application of symmetric and asymmetric pulse shapes, monopolar and multipolar CI stimulation strategies, and a perimodiolar and lateral CI array system. Our main findings are as follows: (1) action potential (AP) initiation sites occurred mainly in the peripheral site in the lateral system regardless of stimulation strategies, pulse polarities, pulse shapes, cochlear turns, and ANF degeneration levels. However, in the perimodiolar system, AP initiation sites varied between peripheral and central processes, depending on stimulation strategies, pulse shapes, and pulse polarities. (2) In perimodiolar array, clusters formed in threshold values based on cochlear turns and degeneration levels for multipolar strategies only when asymmetric pulses were applied. (3) In the perimodiolar array, a declining trend in polarity (anodic threshold/cathodic threshold) with multipolar strategies was observed between intact or slight degenerated cases and more severe degenerated cases, whereas in the lateral array, cathodic sensitivity was noticed for intact and less degenerated cases and anodic sensitivity for cases with high degrees of degeneration. Our results suggest that a combination of asymmetric pulse shapes, focusing more on multipolar stimulation strategies, as well as considering the distances to the modiolus wall, allows us to distinguish the degeneration patterns of ANFs across the cochlea.
Collapse
Affiliation(s)
- Amirreza Heshmat
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria.,Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sogand Sajedi
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| | - Anneliese Schrott-Fischer
- Laboratory for Inner Ear Biology, Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank Rattay
- Institute for Analysis and Scientific Computing, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
7
|
Arslan NÖ, Akbulut AA, Köse B, Karaman-Demirel A, Derinsu U. Sound quality perception of cochlear implant recipients: low-frequency information and foreign-language effect. Int J Audiol 2021; 61:1045-1053. [PMID: 34894993 DOI: 10.1080/14992027.2021.2005833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to adapt a method used in sound quality measurements named CI-MUSHRA (the multiple stimuli with hidden reference and anchor for cochlear implant users) to the Turkish language. The effect of low-frequency information and non-native musical stimuli on sound quality perception was investigated. DESIGN Subjects completed the Turkish version of the MUSHRA test, called TR-MUSHRA, and the original CI-MUSHRA test. Participants also completed the Turkish monosyllabic word recognition test and the spectral temporal modulated ripple test (SMRT). STUDY SAMPLE 19 cochlear implant (CI) users and 16 normal-hearing (NH) adults were included. RESULTS CI users demonstrated a lack of ability to detect the sound quality differences between original stimuli and stimuli with omitted low-frequency information up to 600 Hz in both tests. There was no significant main effect of the test version on sound quality ratings for the two groups. No significant correlation was found between mean sound quality scores, SMRT, and speech recognition in quiet and noise conditions. CONCLUSIONS Our study suggests that CI users perform poorly in discriminating high-pass filtered musical sounds regardless of the language of the musical stimuli. The TR-MUSHRA can be used as a reliable research tool to evaluate the perceived sound quality.
Collapse
Affiliation(s)
- Niyazi Ömer Arslan
- Program of Audiology and Speech Disorders, Institute of Health Sciences, Marmara University, Istanbul, Turkey.,Program of Speech and Hearing Science, College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Ahmet Alperen Akbulut
- Program of Audiology and Speech Disorders, Institute of Health Sciences, Marmara University, Istanbul, Turkey.,Department of Audiology, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Turkey
| | - Büşra Köse
- Program of Audiology and Speech Disorders, Institute of Health Sciences, Marmara University, Istanbul, Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ayşenur Karaman-Demirel
- Program of Audiology and Speech Disorders, Institute of Health Sciences, Marmara University, Istanbul, Turkey.,Vocational School of Health Services, Istanbul Okan University, Istanbul, Turkey
| | - Ufuk Derinsu
- Department of Audiology, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
Carlyon RP, Goehring T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J Assoc Res Otolaryngol 2021; 22:481-508. [PMID: 34432222 PMCID: PMC8476711 DOI: 10.1007/s10162-021-00811-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cochlear implants (CIs) are the world's most successful sensory prosthesis and have been the subject of intense research and development in recent decades. We critically review the progress in CI research, and its success in improving patient outcomes, from the turn of the century to the present day. The review focuses on the processing, stimulation, and audiological methods that have been used to try to improve speech perception by human CI listeners, and on fundamental new insights in the response of the auditory system to electrical stimulation. The introduction of directional microphones and of new noise reduction and pre-processing algorithms has produced robust and sometimes substantial improvements. Novel speech-processing algorithms, the use of current-focusing methods, and individualised (patient-by-patient) deactivation of subsets of electrodes have produced more modest improvements. We argue that incremental advances have and will continue to be made, that collectively these may substantially improve patient outcomes, but that the modest size of each individual advance will require greater attention to experimental design and power. We also briefly discuss the potential and limitations of promising technologies that are currently being developed in animal models, and suggest strategies for researchers to collectively maximise the potential of CIs to improve hearing in a wide range of listening situations.
Collapse
Affiliation(s)
- Robert P Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.
| | - Tobias Goehring
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|