1
|
Luo L, Feng F, Zhong A, Guo N, He J, Li C. The advancement of polysaccharides in disease modulation: Multifaceted regulation of programmed cell death. Int J Biol Macromol 2024; 261:129669. [PMID: 38272424 DOI: 10.1016/j.ijbiomac.2024.129669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Programmed cell death (PCD), also known as regulatory cell death (RCD), is a process that occurs in all organisms and is closely linked to both normal physiological processes and disease states. Various signaling pathways, such as TP53, KRAS, NOTCH, hypoxia, and metabolic reprogramming, have been found to regulate RCD. Polysaccharides, which are essential natural products, have been the subject of extensive research in the fields of food, nutrition, and medicine due to their wide range of pharmacological effects. Studies have shown that polysaccharides have biological activities and the potential to target signal transduction pathways for the treatment of diseases. This paper provides a review of the mechanisms through which polysaccharides exert their therapeutic effects at different levels and explores the relationship between different types of RCD and human diseases. The aim of this review is to provide a theoretical basis for the further clinical use and application of polysaccharide bioactivities.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong 524023, China.
| | - Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Ai Zhong
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Nuoqing Guo
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Chenying Li
- The First Clinical College, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
2
|
Zheng Q, Gao N, Sun Q, Li X, Wang Y, Xiao H. bfc, a novel serpent co-factor for the expression of croquemort, regulates efferocytosis in Drosophila melanogaster. PLoS Genet 2021; 17:e1009947. [PMID: 34860835 PMCID: PMC8673676 DOI: 10.1371/journal.pgen.1009947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 12/15/2021] [Accepted: 11/15/2021] [Indexed: 01/01/2023] Open
Abstract
Efferocytosis is the process by which phagocytes recognize, engulf, and digest (or clear) apoptotic cells during development. Impaired efferocytosis is associated with developmental defects and autoimmune diseases. In Drosophila melanogaster, recognition of apoptotic cells requires phagocyte surface receptors, including the scavenger receptor CD36-related protein, Croquemort (Crq, encoded by crq). In fact, Crq expression is upregulated in the presence of apoptotic cells, as well as in response to excessive apoptosis. Here, we identified a novel gene bfc (booster for croquemort), which plays a role in efferocytosis, specifically the regulation of the crq expression. We found that Bfc protein interacts with the zinc finger domain of the GATA transcription factor Serpent (Srp), to enhance its direct binding to the crq promoter; thus, they function together in regulating crq expression and efferocytosis. Overall, we show that Bfc serves as a Srp co-factor to upregulate the transcription of the crq encoded receptor, and consequently boosts macrophage efferocytosis in response to excessive apoptosis. Therefore, this study clarifies how phagocytes integrate apoptotic cell signals to mediate efferocytosis.
Collapse
Affiliation(s)
- Qian Zheng
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Ning Gao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qiling Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiaowen Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yanzhe Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
3
|
Codispoti B, Makeeva I, Sied J, Benincasa C, Scacco S, Tatullo M. Should we reconsider the apoptosis as a strategic player in tissue regeneration? Int J Biol Sci 2019; 15:2029-2036. [PMID: 31592227 PMCID: PMC6775292 DOI: 10.7150/ijbs.36362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
Apoptosis plays a central role in organs development and homeostasis. Impaired regulation of this process is often associated with the onset of several human diseases, such as developmental disorders and cancer. The last scientific investigations have discovered interesting connections between apoptosis, stem cells, tissue regeneration and cancer. The role of "programmed cell death" in stem cells and tissue engineering is extremely promising; in fact, it holds great potential for regenerative purposes. However, several questions still remain unsolved: do we really know all the main molecular actors able to switch ON/OFF the apoptosis? Is it possible to modulate these players, to obtain a predictable regeneration of tissues and organs? But primarily: should we reconsider the apoptosis as a strategic player in tissue regeneration? In this topical review, we have carefully examined the most recent discoveries about the role of apoptosis in stem cells and, specifically, in mesenchymal stem cells. The pivotal molecules involved in the activation and inhibition of the apoptotic pathways will be carefully described, with the aim to shed an overall light on the complex scenario of stem cell life and death, and on a novel strategy for tissue regeneration.
Collapse
Affiliation(s)
- Bruna Codispoti
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Irina Makeeva
- Department of Therapeutic Dentistry, IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jamal Sied
- Advanced Technology Dental Research Laboratory, Faculty of Dentistry, King Abdul Aziz University, KSA and Director of CODE-M, Center of Dental Education and Medicine, Pakistan
| | - Caterina Benincasa
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy
| | - Salvatore Scacco
- Dept. of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Italy
| | - Marco Tatullo
- Marrelli Health, Tecnologica Research Institute, Biomedical Section, Street E. Fermi, Crotone, Italy.,Department of Therapeutic Dentistry, IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
4
|
Tabrez S, Jabir NR, Khan MI, Khan MS, Shakil S, Siddiqui AN, Zaidi SK, Ahmed BA, Kamal MA. Association of autoimmunity and cancer: An emphasis on proteolytic enzymes. Semin Cancer Biol 2019; 64:19-28. [PMID: 31100322 DOI: 10.1016/j.semcancer.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022]
Abstract
Cancer and autoimmune diseases are the two devastating conditions that together constitute a leading health problem worldwide. The rising burden of these disorders in the developing world demands a multifaceted approach to address the challenges it poses. Understanding the root causes and specific molecular mechanisms by which the progression of the diseases takes place is need of the hour. A strong inflammatory background and common developmental pathways, such as activation of immune cells, proliferation, increased cell survival and migration which are controlled by growth factors and inflammatory cytokines have been considered as the critical culprits in the progression and complications of these disorders. Enzymes are the potential immune modulators which regulate various inflammatory events and can break the circulating immune complexes via macrophages production. In the current manuscript, we have uncovered the possible role of proteolytic enzymes in the pathogenesis and progression of cancer and autoimmune diseases. In the light of the available scientific literature, we advocate in-depth comprehensive studies which will shed light towards the role of proteolytic enzymes in the modulation of inflammatory responses in cancer and autoimmune diseases together.
Collapse
Affiliation(s)
- Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Nasimudeen R Jabir
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Mohammad Imran Khan
- Protein Research Chair, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Syed Kashif Zaidi
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry, Centre for Research and Development, PRIST University, Vallam, Thanjavur, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Zheng Q, Ma A, Yuan L, Gao N, Feng Q, Franc NC, Xiao H. Apoptotic Cell Clearance in Drosophila melanogaster. Front Immunol 2017; 8:1881. [PMID: 29326726 PMCID: PMC5742343 DOI: 10.3389/fimmu.2017.01881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
The swift clearance of apoptotic cells (ACs) (efferocytosis) by phagocytes is a critical event during development of all multicellular organisms. It is achieved through phagocytosis by professional or amateur phagocytes. Failure in this process can lead to the development of inflammatory autoimmune or neurodegenerative diseases. AC clearance has been conserved throughout evolution, although many details in its mechanisms remain to be explored. It has been studied in the context of mammalian macrophages, and in the nematode Caenorhabditis elegans, which lacks “professional” phagocytes such as macrophages, but in which other cell types can engulf apoptotic corpses. In Drosophila melanogaster, ACs are engulfed by macrophages, glial, and epithelial cells. Drosophila macrophages perform similar functions to those of mammalian macrophages. They are professional phagocytes that participate in phagocytosis of ACs and pathogens. Study of AC clearance in Drosophila has identified some key elements, like the receptors Croquemort and Draper, promoting Drosophila as a suitable model to genetically dissect this process. In this review, we survey recent works of AC clearance pathways in Drosophila, and discuss the physiological outcomes and consequences of this process.
Collapse
Affiliation(s)
- Qian Zheng
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| | - AiYing Ma
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China.,College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan, NingXia, China
| | - Lei Yuan
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| | - Ning Gao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| | - Qi Feng
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| | - Nathalie C Franc
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Hui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University Xi'an, Xi'an, China
| |
Collapse
|
6
|
Mackay M, Pérez-López AM, Bradley M, Lilienkampf A. Eliminating caspase-7 and cathepsin B cross-reactivity on fluorogenic caspase-3 substrates. MOLECULAR BIOSYSTEMS 2016; 12:693-6. [PMID: 26726961 PMCID: PMC4763880 DOI: 10.1039/c5mb00730e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
Abstract
11 FRET-based fluorogenic substrates were constructed using the pentapeptide template Asp-Glu-X2-Asp-X1', and evaluated with caspase-3, caspase-7 and cathepsin B. The sequence Asp-Glu-Pro-Asp-Ser was able to selectively quantify caspase-3 activity in vitro without notable caspase-7 and cathepsin B cross-reactivity, while exhibiting low μM KM values and good catalytic efficiencies (7.0-16.9 μM(-1) min(-1)).
Collapse
Affiliation(s)
- Martha Mackay
- EaStCHEM, School of Chemistry, University of Edinburgh, West Mains Road, EH9 3FJ Edinburgh, UK.
| | - Ana M Pérez-López
- EaStCHEM, School of Chemistry, University of Edinburgh, West Mains Road, EH9 3FJ Edinburgh, UK.
| | - Mark Bradley
- EaStCHEM, School of Chemistry, University of Edinburgh, West Mains Road, EH9 3FJ Edinburgh, UK.
| | - Annamaria Lilienkampf
- EaStCHEM, School of Chemistry, University of Edinburgh, West Mains Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
7
|
Zhang Y, Wei Z, Li J, Liu P. Molecular pathogenesis of lymphomas of mucosa-associated lymphoid tissue--from (auto)antigen driven selection to the activation of NF-κB signaling. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1246-55. [PMID: 26612043 DOI: 10.1007/s11427-015-4977-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
Abstract
Lymphomas of mucosa-associated lymphoid tissue (MALT) are typically present at sites such as the stomach, lung or urinary tract, where lymphoid tissues scatter in mucosa lamina propria, intra- or sub-epithelial cells. The infection of certain pathogens, such as Helicobacter pylori, Chlamydophila psittaci, Borrelia burgdorferi, hepatitis C virus, or certain autoantigens cause these sites to generate a germinal center called the "acquired lymphoid tissue". The molecular pathogenesis of MALT lymphoma is a multi-step process. Receptor signaling, such as the contact stimulation of B cell receptors and CD4 positive T cells mediated by CD40/CD40-ligand and T helper cell type 2 cytokines like interleukin-4, contributes to tumor cell proliferation. A number of genetic alterations have been identified in MALT lymphoma, and among them are important translocations, such as t(11;18)(q21;q21), t(1;14)(p22;q32), t(14;18)(q32;q21) and t(3;14)(p13;q32). Fusion proteins generated by these translocations share the same NF-κB signaling pathway, which is activated by the caspase activation and recruitment domain containing molecules of the membrane associated guanylate kinase family, B cell lymphoma-10 and MALT1 (CBM) protein complex. They act downstream of cell surface receptors, such as B cell receptors, T cell receptors, B cell activating factors and Toll-like receptors, and participate in the biological process of MALT lymphoma. The discovery of therapeutic drugs that exclusively inhibit the antigen receptor signaling pathway will be beneficial for the treatment of B cell lymphomas in the future.
Collapse
Affiliation(s)
- YiAn Zhang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Wei
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jing Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Abstract
Since the initial description of apoptosis, a number of different forms of cell death have been described. In this review we will focus on classic caspase-dependent apoptosis and its variations that contribute to diseases. Over fifty years of research have clarified molecular mechanisms involved in apoptotic signaling as well and shown that alterations of these pathways lead to human diseases. Indeed both reduced and increased apoptosis can result in pathology. More recently these findings have led to the development of therapeutic approaches based on regulation of apoptosis, some of which are in clinical trials or have entered medical practice.
Collapse
Affiliation(s)
- Bartolo Favaloro
- Dipartimento di Scienze Biomediche, Universita' "G. d'Annunzio" Chieti-Pescara, Italy
| | | | | | | | | |
Collapse
|
9
|
Reubold TF, Wohlgemuth S, Eschenburg S. A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. J Biol Chem 2009; 284:32717-24. [PMID: 19801675 DOI: 10.1074/jbc.m109.014027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cytosolic adaptor protein Apaf-1 is a key player in the intrinsic pathway of apoptosis. Binding of mitochondrially released cytochrome c and of dATP or ATP to Apaf-1 induces the formation of the heptameric apoptosome complex, which in turn activates procaspase-9. We have re-investigated the chain of events leading from monomeric autoinhibited Apaf-1 to the functional apoptosome in vitro. We demonstrate that Apaf-1 does not require energy from nucleotide hydrolysis to eventually form the apoptosome. Despite a low intrinsic hydrolytic activity of the autoinhibited Apaf-1 monomer, nucleotide hydrolysis does not occur at any stage of the process. Rather, mere binding of ATP in concert with the binding of cytochrome c primes Apaf-1 for assembly. Contradicting the current view, there is no strict requirement for an adenine base in the nucleotide. On the basis of our results, we present a new model for the mechanism of apoptosome assembly.
Collapse
Affiliation(s)
- Thomas F Reubold
- Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | | | | |
Collapse
|
10
|
Khan Z, Tiwari RP, Mulherkar R, Sah NK, Prasad GBKS, Shrivastava BR, Bisen PS. Detection of survivin and p53 in human oral cancer: Correlation with clinicopathologic findings. Head Neck 2009; 31:1039-48. [DOI: 10.1002/hed.21071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Silva EA, Burden J, Franc NC. In vivo and in vitro methods for studying apoptotic cell engulfment in Drosophila. Methods Enzymol 2008; 446:39-59. [PMID: 18603115 DOI: 10.1016/s0076-6879(08)01603-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proper development of all multicellular organisms involves programmed apoptosis. Completion of this process requires removal of the resulting cell corpses through phagocytosis by their neighbors or by macrophages. Studies in C. elegans have been fruitful in the genetic dissection of key pathways, but they lack the professional immune system of higher organisms. Mammalian studies have identified a plethora of factors that are required for engulfment, but redundancy in the pathways has made it difficult to explain the genetic hierarchy of these factors. Thus, Drosophila has proven to be a useful evolutionary intermediate in which to examine this phenomenon. Here we describe methods used for dissecting the mechanisms and pathways involved in the engulfment of apoptotic cells by Drosophila phagocytes. Included are methods to be used for in vivo studies in the early embryo that can be used to examine engulfment of dying cells at various stages of embryogenesis. We also describe in vitro techniques for the use of Drosophila cell culture, including cell engulfment assays, that can be used for general phenotypic analysis, as well as live cell studies. We provide advice on imaging, including the preparation of samples for high-resolution microscopy and quantification of potential engulfment phenotypes for both in vivo and in vitro methods.
Collapse
Affiliation(s)
- Elizabeth A Silva
- Medical Research Council Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, and Anatomy and Developmental Biology Department, University College London, London, UK
| | | | | |
Collapse
|
12
|
Galanzha EI, Tuchin VV, Zharov VP. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening. World J Gastroenterol 2007; 13:192-218. [PMID: 17226898 PMCID: PMC4065947 DOI: 10.3748/wjg.v13.i2.192] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using animal mesentery with intravital optical microscopy is a well-established experimental model for studying blood and lymph microcirculation in vivo. Recent advances in cell biology and optical techniques provide the basis for extending this model for new applications, which should generate significantly improved experimental data. This review summarizes the achievements in this specific area, including in vivo label-free blood and lymph photothermal flow cytometry, super-sensitive fluorescence image cytometry, light scattering and speckle flow cytometry, microvessel dynamic microscopy, infrared (IR) angiography, and high-speed imaging of individual cells in fast flow. The capabilities of these techniques, using the rat mesentery model, were demonstrated in various studies; e.g., real-time quantitative detection of circulating and migrating individual blood and cancer cells, studies on vascular dynamics with a focus on lymphatics under normal conditions and under different interventions (e.g. lasers, drugs, nicotine), assessment of lymphatic disturbances from experimental lymphedema, monitoring cell traffic between blood and lymph systems, and high-speed imaging of cell transient deformability in flow. In particular, the obtained results demonstrated that individual cell transportation in living organisms depends on cell type (e.g., normal blood or leukemic cells), the cell’s functional state (e.g., live, apoptotic, or necrotic), and the functional status of the organism. Possible future applications, including in vivo early diagnosis and prevention of disease, monitoring immune response and apoptosis, chemo- and radio-sensitivity tests, and drug screening, are also discussed.
Collapse
Affiliation(s)
- Ekaterina I Galanzha
- Philips Classic Laser Laboratories, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205-7199, United States.
| | | | | |
Collapse
|