Curado G, Rubio-Casal AE, Figueroa E, Castillo JM. Potential of Spartina maritima in restored salt marshes for phytoremediation of metals in a highly polluted estuary.
INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014;
16:1209-1220. [PMID:
24933912 DOI:
10.1080/15226514.2013.821451]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sedimentary abiotic environment, and concentration and stock of nine metals were analyzed in vegetation and sediments to evaluate the phytoremediation capacity of restored Spartina maritima prairies in the highly polluted Odiel Marshes (SW Iberian Peninsula). Samples were collected in two 10 -m long rows parallel to the tidal line at two sediments depths (0-2 cm and 2-20 cm). Metal concentrations were measured by inductively coupled plasma spectroscopy. Iron, aluminum, copper, and zinc were the most concentrated metals. Every metal, except nickel, showed higher concentration in the root zone than at the sediment surface, with values as high as ca. 70 g Fe kg(-1). The highest metal concentrations in S. maritima tissues were recorded in its roots (maximum for iron in Spartina roots: 4160.2 +/- 945.3 mg kg(-1)). Concentrations of aluminum and iron in leaves and roots were higher than in superficial sediments. Rhizosediments showed higher concentrations of every metal than plant tissues, except for nickel. Sediment metal stock in the first 20 cm deep was ca. 170.89 t ha(-1). Restored S. maritima prairies, with relative cover of 62 +/- 6%, accumulated ca. 22 kg metals ha(-1). Our results show S. maritima to be an useful biotool for phytoremediation projects in European salt marshes.
Collapse