1
|
Yang YH, Wang CJ, Li RF, Zhang ZY, Yang H, Chu CY, Li JT. Overexpression of RgPAL family genes involved in phenolic biosynthesis promotes the replanting disease development in Rehmannia glutinosa. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153339. [PMID: 33383401 DOI: 10.1016/j.jplph.2020.153339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Rehmannia glutinosa production is affected by the replanting disease, which involves autotoxic harm mediated by specific endogenous allelochemicals in root exudates. Many phenolics that act as allelochemical agents are mostly phenylpropanoid products of secondary metabolism in plants. Phenylalanine ammonia-lyase (PAL) is the first enzyme that catalyses the deamination of l-phenylalanine for entrance into the phenylpropanoid pathway. PAL family genes have been isolated and functionally characterized in many plant species. However, PAL family genes involved in phenolic biosynthesis remain largely uncharacterized in R. glutinosa. Here, we identified and characterized four PAL family genes (RgPAL2 to RgPAL5) in the species whose sequences exhibited highly conserved domains of PALs according to in silico analysis, implying their potential function in phenolic biosynthesis. Overexpression of RgPALs in R. glutinosa enhanced phenolic production, verifying that RgPAL family genes participate in phenolic biosynthesis pathways. Moreover, we found that the release of several allelopathic phenolics from the roots of RgPAL-overexpressing transgenic R. glutinosa increased, implying that the RgPALs positively promote their release. Importantly, under continuous monoculture stress, we found that the RgPAL transgenic plants exhibited more significant autotoxic harm than did non-transgenic (WT) plants by activating the phenolics/phenylpropanoid pathway, indicating that RgPAL family genes function as positive regulators of the replanting disease development in R. glutinosa. This study revealed that RgPAL family genes are involved in the biosynthesis and release of several phenolics and positively control the replanting disease development in R. glutinosa, laying a foundation for further clarification of the molecular mechanisms underlying the disease formation.
Collapse
Affiliation(s)
- Yan Hui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Chao Jie Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Rui Fang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Zhong Yi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou, 350002, China.
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Chen Yang Chu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| | - Jia Tian Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zero, Henan Province, 450001, China.
| |
Collapse
|
2
|
Yang Y, Zhang Z, Li R, Yi Y, Yang H, Wang C, Wang Z, Liu Y. RgC3H Involves in the Biosynthesis of Allelopathic Phenolic Acids and Alters Their Release Amount in Rehmannia glutinosa Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E567. [PMID: 32365552 PMCID: PMC7284580 DOI: 10.3390/plants9050567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Rehmannia glutinosa production is affected by replanting disease, in which autotoxic harm to plants is mediated by endogenous phenolic acids as allelopathic compounds found in root exudates. These phenolic acids are mostly phenylpropanoid products of plants' secondary metabolisms. The molecular mechanism of their biosynthesis and release has not been explored in R. glutinosa. P-coumarate-3-hydroxylase (C3H) is the second hydroxylase gene involved in the phenolic acid/phenylpropanoid biosynthesis pathways. C3Hs have been functionally characterized in several plants. However, limited information is available on the C3H gene in R. glutinosa. Here, we identified a putative RgC3H gene and predicted its potential function by in silico analysis and subcellular localization. Overexpression or repression of RgC3H in the transgenic R. glutinosa roots indicated that the gene was involved in allelopathic phenolic biosynthesis. Moreover, we found that these phenolic acid release amount of the transgenic R. glutinosa roots were altered, implying that RgC3H positively promotes their release via the molecular networks of the activated phenolic acid/phenylpropanoid pathways. This study revealed that RgC3H plays roles in the biosynthesis and release of allelopathic phenolic acids in R. glutinosa roots, laying a basis for further clarifying the molecular mechanism of the replanting disease development.
Collapse
Affiliation(s)
- Yanhui Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China;
| | - Ruifang Li
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Yanjie Yi
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Heng Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Chaojie Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Zushiqi Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| | - Yunyi Liu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-Technology Zero, Zhengzhou 450001, China; (R.L.); (Y.Y.); (H.Y.); (C.W.); (Z.W.); (Y.L.)
| |
Collapse
|
3
|
Wu L, Wang J, Wu H, Chen J, Xiao Z, Qin X, Zhang Z, Lin W. Comparative Metagenomic Analysis of Rhizosphere Microbial Community Composition and Functional Potentials under Rehmannia glutinosa Consecutive Monoculture. Int J Mol Sci 2018; 19:ijms19082394. [PMID: 30110928 PMCID: PMC6121535 DOI: 10.3390/ijms19082394] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/16/2022] Open
Abstract
Consecutive monoculture of Rehmannia glutinosa, highly valued in traditional Chinese medicine, leads to a severe decline in both quality and yield. Rhizosphere microbiome was reported to be closely associated with the soil health and plant performance. In this study, comparative metagenomics was applied to investigate the shifts in rhizosphere microbial structures and functional potentials under consecutive monoculture. The results showed R. glutinosa monoculture significantly decreased the relative abundances of Pseudomonadaceae and Burkholderiaceae, but significantly increased the relative abundances of Sphingomonadaceae and Streptomycetaceae. Moreover, the abundances of genera Pseudomonas, Azotobacter, Burkholderia, and Lysobacter, among others, were significantly lower in two-year monocultured soil than in one-year cultured soil. For potentially harmful/indicator microorganisms, the percentages of reads categorized to defense mechanisms (i.e., ATP-binding cassette (ABC) transporters, efflux transporter, antibiotic resistance) and biological metabolism (i.e., lipid transport and metabolism, secondary metabolites biosynthesis, transport and catabolism, nucleotide transport and metabolism, transcription) were significantly higher in two-year monocultured soil than in one-year cultured soil, but the opposite was true for potentially beneficial microorganisms, which might disrupt the equilibrium between beneficial and harmful microbes. Collectively, our results provide important insights into the shifts in genomic diversity and functional potentials of rhizosphere microbiome in response to R. glutinosa consecutive monoculture.
Collapse
Affiliation(s)
- Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Juanying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongmiao Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jun Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhigang Xiao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xianjin Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| | - Zhongyi Zhang
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China.
| |
Collapse
|