1
|
Sanjana S, Jazeel K, Janeeshma E, Nair SG, Shackira AM. Synergistic interactions of assorted ameliorating agents to enhance the potential of heavy metal phytoremediation. STRESS BIOLOGY 2024; 4:13. [PMID: 38363436 PMCID: PMC10873264 DOI: 10.1007/s44154-024-00153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Pollution by toxic heavy metals creates a significant impact on the biotic community of the ecosystem. Nowadays, a solution to this problem is an eco-friendly approach like phytoremediation, in which plants are used to ameliorate heavy metals. In addition, various amendments are used to enhance the potential of heavy metal phytoremediation. Symbiotic microorganisms such as phosphate-solubilizing bacteria (PSB), endophytes, mycorrhiza and plant growth-promoting rhizobacteria (PGPR) play a significant role in the improvement of heavy metal phytoremediation potential along with promoting the growth of plants that are grown in contaminated environments. Various chemical chelators (Indole 3-acetic acid, ethylene diamine tetra acetic acid, ethylene glycol tetra acetic acid, ethylenediamine-N, N-disuccinic acid and nitrilotri-acetic acid) and their combined action with other agents also contribute to heavy metal phytoremediation enhancement. With modern techniques, transgenic plants and microorganisms are developed to open up an alternative strategy for phytoremediation. Genomics, proteomics, transcriptomics and metabolomics are widely used novel approaches to develop competent phytoremediators. This review accounts for the synergistic interactions of the ameliorating agent's role in enhancing heavy metal phytoremediation, intending to highlight the importance of these various approaches in reducing heavy metal pollution.
Collapse
Affiliation(s)
- S Sanjana
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - K Jazeel
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India
| | - E Janeeshma
- Department of Botany, MES KEVEEYAM College, Valanchery, Malappuram, Kerala, India
| | - Sarath G Nair
- Department of Botany, Mar Athanasius College, Mahatma Gandhi University, Kottayam, Kerala, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Kannur University, Kerala, 670142, India.
| |
Collapse
|
2
|
Xu Z, Pan J, Ullah N, Duan Y, Hao R, Li J, Huang Q, Xu L. 5-Aminolevulinic acid mitigates the chromium-induced changes in Helianthus annuus L. as revealed by plant defense system enhancement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107701. [PMID: 37105019 DOI: 10.1016/j.plaphy.2023.107701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/07/2023]
Abstract
Chromium (Cr) in the soil is one of the major pollutants for agricultural production. This study examined the efficiency of sunflower plants to remediate Cr-contaminated soils using a plant growth regulator, 5-aminolevolinic acid (ALA). At six leaf stage, sunflower plants were exposed to soil-applied Cr (0.15 g kg-1), manganese (Mn, 0.3 g kg-1) and trisodium (S,S)-ethylenediamine-N,N'-disuccinic acid (EDDS, 2.5 mmol kg-1), ALA (10 mg L-1) was sprayed. After ALA treatment, the plants were harvested for further biochemical analyses. Results showed that EDDS and Mn improved the Cr accumulation but restrained plant growth. Conversely, ALA improved the growth of Cr-stressed plants by promoting chlorophyll concentration in the top fully expanded leaves. The bioaccumulation quantity and removal efficiency of sunflowers treated by Cr + EDDS + ALA was improved by 47.92% and 47.94%, respectively, as compared to the Cr treatment. This was further supported by qRT-PCR analysis, where the expression of heavy metal transport genes such as ZIP6 and NRAMP6 and subsequently Cr accumulation in sunflower tissues increased by EDDS, Mn, and ALA application. However, compared with other treatments, ALA ameliorated cellular injury from Cr-stress by uptake or movement of Cr prevention, modulation of antioxidant enzymes, and elimination of reactive oxygen species. Our study suggested that ALA as an ideal option for the phytoremediation of Cr-contaminated soils.
Collapse
Affiliation(s)
- Zishu Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province , College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianmin Pan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province , College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research & Graduate Studies, Qatar University, Doha 2713, Qatar
| | - Yi Duan
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province , College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruiyong Hao
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province , College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juanjuan Li
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Qian Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Ling Xu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province , College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Rong L, Zhang S, Wang J, Li S, Xie S, Wang G. Phytoremediation of uranium-contaminated soil by perennial ryegrass (Lolium perenne L.) enhanced with citric acid application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33002-33012. [PMID: 35020149 DOI: 10.1007/s11356-022-18600-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Perennial ryegrass (Lolium perenne L.) was planted in uranium-contaminated soil mixtures supplemented with different amounts of citric acid to investigate the defense strategies of perennial ryegrass against U and the enhanced mechanism of citric acid on the remediation efficiency in the laboratory. The uranium content in the plant tissues showed that the roots were the predominant tissue for uranium accumulation. In both root and shoot cells, the majority of U was located in the cell wall fraction. Furthermore, antioxidant enzymes were also stimulated when exposed to U stress. These results suggested that perennial ryegrass had evolved defense strategies, such as U sequestration in root tissue, compartmentalization in the cell wall, and antioxidant enzyme systems, to minimize uranium stress. For an enhanced mechanism, the optimal concentration of citric acid was 5 mmol/kg, and the removal efficiency of U in the shoots and roots increased by 47.37% and 30.10%, respectively. The treatment with 5 mmol/kg citric acid had the highest contents of photosynthetic pigment and soluble protein, the highest activity of antioxidant enzymes, and the lowest content of MDA (malondialdehyde) and relative electrical conductivity. Moreover, the TEM (transmission electron microscope) results revealed that after 5 mmol/kg citric acid was added, the cell structure of plant branches partially returned to normal, the number of mitochondria increased, chloroplast surfaces seemed normal, and the cell wall became visible. The damage to the cell ultrastructure of perennial ryegrass was significantly alleviated by treatment with 5 mmol/kg citric acid. All the results above indicated that perennial ryegrass could accumulate uranium with elevated uranium tolerance and enrichment ability with 5 mmol/kg citric acid.
Collapse
Affiliation(s)
- Lishan Rong
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shiqi Zhang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Jiali Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shiyou Li
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Shuibo Xie
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China
| | - Guohua Wang
- Hunan Provincial Key Laboratory of Pollution Control and Resources Technology, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
4
|
Bian JL, Cao W, Guo JM, Yang JX, Wang XD, Wang J, Huang J, Xia TX, Xia CY. Water-soluble chitosan and phytoremediation efficiency of two Brassica napus L. cultivars in cadmium-contaminated farmland soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1557-1566. [PMID: 35297705 DOI: 10.1080/15226514.2022.2049693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pot and field trials were conducted to investigate Cd uptake and phytoremediation efficiency of two Brassica napus cultivars (QY-1 and SYH) with applied water-soluble chitosan (WSC, Pot: 0, 2% and 4%; Field: 0 and 10 g·m-2) grown in Cd-contaminated soils. The results from the pot and field trials generally showed that WSC treatments significantly increased Cd concentrations in shoot and root tissues by 33.77-159.71% (except for SYH/JY) and 7.42-168.71% of two B. napus cultivars compared with the control (p < 0.05). The uptake of Cd by shoots of SYH was obviously higher than by shoots of QY-1 treated with WSC under pot and field conditions, which was 1.54-2.22 times than that of QY-1 (p < 0.05). The results indicated that 2% WSC treatment significantly increased the water-soluble and acid extractable Cd in rhizosphere soils of both B. napus cultivars. Furthermore, Cd concentrations in the oils of two B. napus cultivars with applied WSC (10 g·m-2) grown under field conditions were not significantly different from commercial rapeseed oils. Rapeseed oil of B. napus is not only an edible oil with high nutritional value, but it can also be converted into biomass diesel that can be used as a substitute for petroleum diesel.
Collapse
Affiliation(s)
- Jian-Lin Bian
- College of Resource Environment and Tourism, Capital Normal University, Beijing, China
| | - Wei Cao
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Mei Guo
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Xing Yang
- Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Dong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, China
| | - Jie Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, P. R. China
| | - Tian-Xiang Xia
- Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, China
| | - Cun-Yan Xia
- College of Resource Environment and Tourism, Capital Normal University, Beijing, China
| |
Collapse
|
5
|
Zulfiqar U, Jiang W, Xiukang W, Hussain S, Ahmad M, Maqsood MF, Ali N, Ishfaq M, Kaleem M, Haider FU, Farooq N, Naveed M, Kucerik J, Brtnicky M, Mustafa A. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. FRONTIERS IN PLANT SCIENCE 2022; 13:773815. [PMID: 35371142 PMCID: PMC8965506 DOI: 10.3389/fpls.2022.773815] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/02/2022] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) is a major environmental contaminant due to its widespread industrial use. Cd contamination of soil and water is rather classical but has emerged as a recent problem. Cd toxicity causes a range of damages to plants ranging from germination to yield suppression. Plant physiological functions, i.e., water interactions, essential mineral uptake, and photosynthesis, are also harmed by Cd. Plants have also shown metabolic changes because of Cd exposure either as direct impact on enzymes or other metabolites, or because of its propensity to produce reactive oxygen species, which can induce oxidative stress. In recent years, there has been increased interest in the potential of plants with ability to accumulate or stabilize Cd compounds for bioremediation of Cd pollution. Here, we critically review the chemistry of Cd and its dynamics in soil and the rhizosphere, toxic effects on plant growth, and yield formation. To conserve the environment and resources, chemical/biological remediation processes for Cd and their efficacy have been summarized in this review. Modulation of plant growth regulators such as cytokinins, ethylene, gibberellins, auxins, abscisic acid, polyamines, jasmonic acid, brassinosteroids, and nitric oxide has been highlighted. Development of plant genotypes with restricted Cd uptake and reduced accumulation in edible portions by conventional and marker-assisted breeding are also presented. In this regard, use of molecular techniques including identification of QTLs, CRISPR/Cas9, and functional genomics to enhance the adverse impacts of Cd in plants may be quite helpful. The review's results should aid in the development of novel and suitable solutions for limiting Cd bioavailability and toxicity, as well as the long-term management of Cd-polluted soils, therefore reducing environmental and human health hazards.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Wenting Jiang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Nauman Ali
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Naila Farooq
- Department of Soil and Environmental Science, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
6
|
Wang Y, Xu Y, Qin X, Zhao L, Huang Q, Liang X. Effects of S,S-ethylenediamine disuccinic acid on the phytoextraction efficiency of Solanum nigrum L. and soil quality in Cd-contaminated alkaline wheat soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42959-42974. [PMID: 33830419 DOI: 10.1007/s11356-021-13764-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Degradable chelating agent-assisted phytoextraction is a promising method for the remediation of Cd-contaminated agricultural soil. However, there are limited studies that have examined the effect of chelating agents on soil solutions and soil quality in alkaline soil. In this study, the effects of S,S-ethylenediamine disuccinic acid (EDDS) on the growth and phytoextraction of Solanum nigrum L. (S. nigrum) were studied using pot experiments. The influence of EDDS on the soil solutions, heavy metal contents, and soil enzyme activities was evaluated. EDDS application increased the height of S. nigrum by 7.25-29.25 cm and increased the biomass of stem and leaf by 4.26-14.95 and 1.14-10.78 g/pot, respectively. The Cd concentrations in the leaves and berries of S. nigrum were 1.21-2.17 and 1.7-9.47 times higher than that of the control, respectively, and the Cd extraction amount in the shoots of S. nigrum increased by 22.78-256.16 μg/pot after EDDS application. The chelation of EDDS on heavy metals reached a peak after 7 days of application, decreased gradually with the degradation of EDDS, and disappeared after 30 days of application. Soil pH, available metals, metal speciation, and soil urease were significantly related to the application time of EDDS. Importantly, EDDS application 45 days before S. nigrum harvest treatments decreased the available metal concentrations and improved soil pH and urease activity. However, when EDDS was applied 15 days before S. nigrum harvest, the available Cd and Pb concentrations significantly increased and caused additional Pb pollution. Considering the chelation and degradation effects, the environmental implication, and the cost of EDDS, the results of this study showed that one application of EDDS was better than two applications, a 45-day application before harvest was preferred to a 15-day application, and application of 1-3 mM EDDS 30-45 days before S. nigrum harvest was the most promising application method for the remediation of Cd-contaminated alkaline soil.
Collapse
Affiliation(s)
- Yale Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China.
| | - Xu Qin
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Lijie Zhao
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| |
Collapse
|
7
|
Abstract
Abandoned mine lands (AMLs), which are considered some of the most dangerous anthropogenic activities in the world, are a source of hazards relating to potentially toxic elements (PTEs). Traditional reclamation techniques, which are expensive, time-consuming and not well accepted by the general public, cannot be used on a large scale. However, plant-based techniques have gained acceptance as an environmentally friendly alternative over the last 20 years. Plants can be used in AMLs for PTE phytoextraction, phytostabilization, and phytovolatilization. We reviewed these phytoremediation techniques, paying particular attention to the selection of appropriate plants in each case. In order to assess the suitability of plants for phytoremediation purposes, the accumulation capacity and tolerance mechanisms of PTEs was described. We also compiled a collection of interesting actual examples of AML phytoremediation. On-site studies have shown positive results in terms of soil quality improvement, reduced PTE bioavailability, and increased biodiversity. However, phytoremediation strategies need to better characterize potential plant candidates in order to improve PTE extraction and to reduce the negative impact on AMLs.
Collapse
|
8
|
Mehmood T, Liu C, Niazi NK, Gaurav GK, Ashraf A, Bibi I. Compost-mediated arsenic phytoremediation, health risk assessment and economic feasibility using Zea mays L. in contrasting textured soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:899-910. [PMID: 33395533 DOI: 10.1080/15226514.2020.1865267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) is considered as a potential energy-yielding crop which may respond to compost application for arsenic (As) phytoremediation depending on soil type and compost application levels in soil. Here, we explored compost-mediated As phytoremediation potential of maize in the two different textured soils (sandy loam soil and clay loam soil) at varying As (0-120 mg kg-1) and compost (0-2.5%) levels under glasshouse conditions. Results revealed that in the absence of compost maize plants grown at different soil As levels (0-120 mg kg-1) accumulated 1.20-1.71 times more As from sandy loam soil than that of clay loam soil. The compost addition in soil at all levels, with 120 mg kg-1 As enhanced As accumulation in maize plants in the clay loam soil by 13%, while it reduced As phyto-uptake by 27% in sandy loam soil. This may be due to an increase in phosphate-extractable (bioavailable) soil As content from 2.7 to 3.8 mg kg-1 in clay loam soil. The estimated daily intake (EDI) of As (0.03-0.15 μg g-1 of body weight day-1) was above the US EPA's standard value. Arsenic phytoremediation potential of the maize plants was found to be economical for sandy loam soil with 1% compost level and for clay loam soil at 2.5% compost level, suggesting soil type specific dose dependence of compost for As phytoremediation programs. Novelty statement: To our knowledge, the role of compost in economic feasibility of energy crops at contaminated soils in general, and in the growing of maize at As-contaminated soil in particular, has not been addressed, so far. Moreover, it is the first time to evaluate environmental and health risk of compost-mediated As phytoremediation in different soil types.This study provided new insights of economic evaluation and risk assessment in the phytoremediation and mechanisms of compost in biomass production of energy crop at different As concentration. These aspects in phytoremediation studies are imperative to understand for developing safe, cost-effective and soil specific remediation strategies.
Collapse
Affiliation(s)
- Tariq Mehmood
- College of Environment, Hohai University, Nanjing, China
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Cheng Liu
- College of Environment, Hohai University, Nanjing, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Anam Ashraf
- School of Environment, Tsinghua University, Beijing, China
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
9
|
Wang Y, Xu Y, Qin X, Liang X, Huang Q, Peng Y. Effects of EDDS on the Cd uptake and growth of Tagetes patula L. and Phytolacca americana L. in Cd-contaminated alkaline soil in northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25248-25260. [PMID: 32342425 DOI: 10.1007/s11356-020-08877-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Phytoextraction has been considered an effective and environment-friendly method for removing heavy metals from contaminated soil. However, the efficiency, mechanism, and adaptability of phytoextraction by hyperaccumulators in Cd-polluted weakly alkaline soil have not been investigated in detail. In this study, pot experiments were conducted to evaluate the enhanced effects of S,S-ethylenediamine disuccinic acid (EDDS) on phytoextraction in alkaline soil by measuring the degradation kinetic characteristics of EDDS and Cd absorption dynamics of Tagetes patula L. (T. patula) and Phytolacca americana L. (P. americana) for a period of 55 days. Results showed that the half-life of EDDS varied from 4.20-7.07 days and 3.35-4.36 days for T. patula and P. americana, respectively. EDDS-activated Cd reached saturation at a low dosage (1 mM) and a single application of EDDS was found to be better than double applications. The activation of EDDS on Cd applied before 45 days of harvest was better than that before 15 days of harvest, and disappeared after a 35-day application. Correspondingly, the Cd concentration in P. americana and T. patula leaves increased significantly after 3 days of the EDDS application. However, T. patula had a biomass 2.57 times and Cd absorption capacity 10.06 times higher than P. americana. EDDS showed almost no influence on the stem and leaf biomass of T. patula; however, the root weight decreased by 9.44-71.77%. The Cd concentration in T. patula leaves of all the treatments was 1.00-1.81 times that of the control group. In comparison with other treatments, the EDDS application (3 mM) before 15 days of harvest extracted the highest amount of Cd (601.45 μg/pot) in T. patula shoots, reaching 1.40 times that in the control group. Therefore, T. patula might be a more suitable phytoremediator for Cd-polluted alkaline soil than P. americana; the most effective method was the EDDS application (3 mM) before 15 days of harvest.
Collapse
Affiliation(s)
- Yale Wang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| | - Yingming Xu
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China.
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China.
| | - Xu Qin
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| | - Xuefeng Liang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| | - Yunying Peng
- Innovation Team of Remediation for Heavy Metal Contaminated Farmlands, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
- Key Laboratory of Original Environmental Pollution Control, Ministry of Agriculture and Rural Affairs, Ministry of Agriculture, Agro-Environmental Protection Institute, Tianjin, 300191, People's Republic of China
| |
Collapse
|
10
|
Chen L, Wang D, Long C, Cui ZX. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl. Sci Rep 2019; 9:19817. [PMID: 31875012 PMCID: PMC6930220 DOI: 10.1038/s41598-019-56262-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
This study investigated the effect of ethylenediamine-N,N'-disuccinic acid (EDDS), oxalic acid (OA), and citric acid (CA) on phytoextraction of U- and Cd-contaminated soil by Z. pendula. In this study, the biomass of tested plant inhibited significantly following treatment with the high concentration (7.5 mmol·kg-1) EDDS treatment. Maximum U and Cd concentration in the single plant was observed with the 5 mmol·kg-1 CA and 7.5 mmol·kg-1 EDDS treatment, respectively, whereas OA treatments had the lowest U and Cd uptake. The translocation factors of U and Cd reached the maximum in the 5 mmol·kg-1 EDDS. The maximum bioaccumulation of U and Cd in the single plants was 1032.14 µg and 816.87 µg following treatment with 5 mmol·kg-1 CA treatment, which was 6.60- and 1.72-fold of the control groups, respectively. Furthermore, the resultant rank order for available U and Cd content in the soil was CA > EDDS > OA (U) and EDDS > CA > OA (Cd). These results suggested that CA could greater improve the capacity of phytoextraction using Z. pendula in U- and Cd- contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Dan Wang
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Chan Long
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zheng-Xu Cui
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|