1
|
Garraud J, Plihon H, Capiaux H, Le Guern C, Mench M, Lebeau T. Drivers to improve metal(loid) phytoextraction with a focus on microbial degradation of dissolved organic matter in soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:63-81. [PMID: 37303191 DOI: 10.1080/15226514.2023.2221740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bioaugmentation of soils can increase the mobilization of metal(loid)s from the soil-bearing phases. However, once desorbed, these metal(loid)s are mostly complexed to the dissolved organic matter (DOM) in the soil solution, which can restrict their availability to plants (roots mainly taking up the free forms) and then the phytoextraction performances. Firstly the main drivers influencing phytoextraction are reminded, then the review focuses on the DOM role. After having reminding the origin, the chemical structure and the lability of DOM, the pool of stable DOM (the most abundant in the soil) most involved in the complexation of metal(loid)s is addressed in particular by focusing on carboxylic and/or phenolic groups and factors controlling metal(loid) complexation with DOM. Finally, this review addresses the ability of microorganisms to degrade metal(loid)-DOM complexes as an additional lever for increasing the pool of free metal(loid) ions, and then phytoextraction performances, and details the origin of microorganisms and how they are selected. The development of innovative processes including the use of these DOM-degrading microorganisms is proposed in perspectives.
Collapse
Affiliation(s)
- Justine Garraud
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hélène Plihon
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - Hervé Capiaux
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | | | | | - Thierry Lebeau
- Nantes Université, Université d'Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| |
Collapse
|
2
|
Chengatt AP, Sarath NG, Sebastian DP, Mohanan NS, Sindhu ES, George S, Puthur JT. Chelate assisted phytoextraction for effective rehabilitation of heavy metal(loid)s contaminated lands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:981-996. [PMID: 36148488 DOI: 10.1080/15226514.2022.2124233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The contamination of lands and water by heavy toxic metal(loid)s is an environmental issue that needs serious attention as it poses a major threat to public health. The persistence of heavy metals/metalloids in the environment as well as their potentially dangerous effects on organisms underpins the need to restore the areas contaminated by heavy toxic metal(loid)s. Soil restoration can be achieved through a variety of different methods. Being more cost-effective and environmentally sustainable, phytoremediation has recently replaced traditional processes like soil washing and burning. Many plants have been intensively explored to eliminate various heavy metals from polluted soils through phytoextraction, which is a commonly used phytoremediation approach. The ability of chelants to enhance phytoextraction potential has also received wide attention owing to their ability to elevate the efficiency of plants in removing heavy metal(loid)s. Chelants have been found to improve plant growth and the activity of the defense system. Several chelants, either non-biodegradable or biodegradable, have been reported to augment the phytoextraction efficiencies of various plants. The problem of the leaching of heavy metal(loid)s and secondary pollution caused by non-biodegradable chelants can be overcome by the use of biodegradable chelants to an extent. This review is a brief report focusing on recent articles on chelate-assisted phytoextraction of heavy metal (loids) As, Cd, Cu, Cr, Hg, Ni, Pb, U, and Zn.
Collapse
Affiliation(s)
| | - Nair G Sarath
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kozhikode, India
| | | | | | - E S Sindhu
- Department of Botany, St. Joseph's College (Autonomous), Kozhikode, India
| | - Satheesh George
- Department of Botany, St. Joseph's College (Autonomous), Kozhikode, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kozhikode, India
| |
Collapse
|
3
|
Jalali J, Gaudin P, Ammar E, Lebeau T. Bioaugmentation coupled with phytoextraction for the treatment of Cd and Sr, and reuse opportunities for phosphogypsum rare earth elements. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122821. [PMID: 32516651 DOI: 10.1016/j.jhazmat.2020.122821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/18/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The environmental and health impacts caused by phosphogypsum (PG) make it necessary to carefully manage these wastes. Bioaugmentation of a PG-compost mix with Bacillus cereus was associated with Trifolium pratense or Helianthus annuus for the phytoextraction of metal trace elements (MTE). In hydroponics, MTE concentrations in sunflower shoots are higher than in clover; however, as opposed to clover, it regulates their accumulation. The MTE accumulation levels by plants cultivated in pots with the PG-compost mix are much lower than in hydroponics due to lower concentration in available MTE. The bacteria-plant coupling has served to raise MTE concentrations, especially for rare earth elements (REE), i.e., Ce, La, Nd, Y, in the AP of sunflower, by factors of 4.4, 38.3, 3.4 and 21, respectively, compared to non-bioaugmented control. The translocation factor was also increased for all MTE and is ranged between 1.1 for Sr and 6.8 for Y. Moreover, the presence of bacteria raises plant biomass by a factor of 3.7 for shoots and 2.9 for the roots as regards clover. Results showed that in addition to phytoextraction of REE elements, all providing the promise of some kind of economic opportunity, the dispersion of PG stockpiles dust and erosion should be reduced.
Collapse
Affiliation(s)
- Jihen Jalali
- Laboratory of Planetology and Geodynamics of Nantes, UMR 6112 CNRS, Faculty of Sciences and Technology of Nantes, BP 92208, 44322, Nantes Cedex 3, France; Laboratory of Environmental Sciences and Sustainable Development (LASED), University of Sfax, National Engineering School of Sfax, BP 1173, 3038, Sfax, Tunisia; Tunisian Chemical Group, Mdhilla-Gafsa facility, B.P. 215, 2100, Gafsa, Tunisia
| | - Pierre Gaudin
- Laboratory of Planetology and Geodynamics of Nantes, UMR 6112 CNRS, Faculty of Sciences and Technology of Nantes, BP 92208, 44322, Nantes Cedex 3, France
| | - Emna Ammar
- Laboratory of Environmental Sciences and Sustainable Development (LASED), University of Sfax, National Engineering School of Sfax, BP 1173, 3038, Sfax, Tunisia
| | - Thierry Lebeau
- Laboratory of Planetology and Geodynamics of Nantes, UMR 6112 CNRS, Faculty of Sciences and Technology of Nantes, BP 92208, 44322, Nantes Cedex 3, France.
| |
Collapse
|
4
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|