1
|
Zhang S, Han S, Bi D, Yang J, Ge W, Ye Y, Gao J, Dai C, Kan X. Intraspecific and Intrageneric Genomic Variation across Three Sedum Species (Crassulaceae): A Plastomic Perspective. Genes (Basel) 2024; 15:444. [PMID: 38674379 PMCID: PMC11049395 DOI: 10.3390/genes15040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Sedum is the largest succulent genus in Crassulaceae. Because of predominant maternal inheritance, little recombination, and slow evolution, plastomes can serve as powerful super barcodes for inter- or intra-species phylogenetic analyses. While previous research has focused on plastomes between Sedum species, intra-species studies are scarce. Here, we sequenced plastomes from three Sedum species (Sedum alfredii, Sedum plumbizincicola, and Sedum japonicum) to understand their evolutionary relationships and plastome structural evolution. Our analyses revealed minimal size and GC content variation across species. However, gene distribution at IR boundaries, repeat structures, and codon usage patterns showed diversity at both inter-specific and intra-specific levels. Notably, an rps19 gene expansion and a bias toward A/T-ending codons were observed. Codon aversion motifs also varied, potentially serving as markers for future studies. Phylogenetic analyses confirmed the non-monophyly of Sedum and divided the Acre clade into two groups. Individuals from the same species clustered together, with strong support for the relationships between S. alfredii, S. tricarpum, and S. plumbizincicola. Additionally, S. japonicum clearly affiliates with the Acre clade. This study provides valuable insights into both intra-specific and intra-generic plastome variation in Sedum, as well as overall plastome evolution within the genus.
Collapse
Affiliation(s)
- Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China; (S.Z.); (S.H.); (J.Y.); (Y.Y.); (J.G.)
| | - Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China; (S.Z.); (S.H.); (J.Y.); (Y.Y.); (J.G.)
| | - De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China;
| | - Jianke Yang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China; (S.Z.); (S.H.); (J.Y.); (Y.Y.); (J.G.)
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241002, China
| | - Wen Ge
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China;
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China; (S.Z.); (S.H.); (J.Y.); (Y.Y.); (J.G.)
| | - Jinming Gao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China; (S.Z.); (S.H.); (J.Y.); (Y.Y.); (J.G.)
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Anhui Medical College, Hefei 230061, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, China; (S.Z.); (S.H.); (J.Y.); (Y.Y.); (J.G.)
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
2
|
Huang S, Tan C, Cao X, Yang J, Xing Q, Tu C. Impacts of simulated atmospheric cadmium deposition on the physiological response and cadmium accumulation of Sedum plumbizincicola. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16413-16425. [PMID: 38315335 DOI: 10.1007/s11356-024-31928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Atmospheric cadmium (Cd) deposition contributes to the accumulation of Cd in the soil-plant system. Sedum plumbizincicola is a Cd and Zn hyperaccumulator commonly used for the phytoremediation of Cd-contaminated soil. However, studies on the effects of atmospheric Cd deposition on the accumulation of Cd and physiological response in S. plumbizincicola are still limited. A Cd solution spraying pot experiment was conducted with S. plumbizincicola at three atmospheric Cd deposition concentrations (4, 8, and 12 mg/L). Each Cd concentration levels was divided into two groups, non-mulching (foliar-root uptake) and mulching (foliar uptake). The soil type used in the experiment was reddish clayey soil collected from a farmland. The results showed that compared with the non-mulching control, the fresh weight of S. plumbizincicola in non-mulching with high atmospheric Cd deposition (12 mg/L) increased by 11.35%. Compared with those in the control group, the malondialdehyde (MDA) content in the non-mulching and mulching S. plumbizincicola groups increased by 0.88-11.06 nmol/L and 0.96-1.32 nmol/L, respectively. Compared with those in the non-Cd-treated control group, the shoot Cd content in the mulching group significantly increased by 11.09-180.51 mg/kg. Under high Cd depositions, the Cd in S. plumbizincicola mainly originated from the air and was stored in the shoots (39.7-158.5%). These findings highlight that the physiological response and Cd accumulation of S. plumbizincicola were mainly affected by high Cd deposition and suggest that atmospheric Cd could directly be absorbed by S. plumbizincicola. The effect of atmospheric deposition on S. plumbizincicola cannot be ignored.
Collapse
Affiliation(s)
- Shuopei Huang
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Changyin Tan
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Xueying Cao
- Rural Vitalization Research Institute, Changsha University, Changsha, 410022, People's Republic of China
| | - Jia Yang
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Qianwen Xing
- College of Geographical Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| |
Collapse
|
3
|
Han M, Ullah H, Yang H, Yu G, You S, Liu J, Chen B, Shahab A, Antoniadis V, Shaheen SM, Rinklebe J. Cadmium uptake and membrane transport in roots of hyperaccumulator Amaranthus hypochondriacus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121846. [PMID: 37211225 DOI: 10.1016/j.envpol.2023.121846] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Hyperaccumulator Amaranthus hypochondriacus L. has huge potential in the remediation of cadmium (Cd)-contaminated soils and is necessary to understand the mechanism of Cd uptake by the roots. In this study, the mechanism of Cd uptake into the root of A. hypochondriacus was investigated using the non-invasive micro-test technology (NMT) by analyzing the rate of Cd2+ fluxes at different regions of the root tip; also we assessed the impact of different channel blockers and inhibitors on the Cd accumulation in the roots, the real-time Cd2+ fluxes, and the distribution of Cd along the roots. The results showed that the Cd2+ influx was greater near the root tip (within 100 μm of the tip). All the inhibitors, ion-channel blockers, and metal cations had different degrees of inhibition on the absorption of Cd in the roots of A. hypochondriacus. The net Cd2+ flux in the roots was significantly decreased by the Ca2+ channel blockers lanthanum chloride (LaCl3) by up to 96% and verapamil by up to 93%; as for the K+ channel blocker tetraethylammonium (TEA), it also caused a 68%-reduction on the net Cd2+ flux in the roots. Therefore, we infer that the uptake by A. hypochondriacus roots is mainly through the Ca2+ channels. The Cd absorption mechanism appears to be related to the synthesis of plasma membrane P-type ATPase and phytochelatin (PC), which is reflected by the inhibition of Ca2+ upon addition of inorganic metal cations. In conclusion, access of Cd ions into the roots of A. hypochondriacus is achieved through various ion channels, with the most important being the Ca2+ channel. This study will further enhance the literature regarding Cd uptake and pathways of membrane transport in roots of Cd hyperaccumulators.
Collapse
Affiliation(s)
- Mengxuan Han
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Huan Yang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China.
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, Germany.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal, Germany.
| |
Collapse
|
4
|
Haritash AK. Cadmium Uptake From Soil by Ornamental Metallophytes: A Meta-analytical Approach. ENVIRONMENTAL MANAGEMENT 2023; 71:1087-1097. [PMID: 36573998 DOI: 10.1007/s00267-022-01776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/20/2022] [Indexed: 06/19/2023]
Abstract
Soil pollution by cadmium (Cd) is a serious issue worldwide affecting environmental and human health. Conventional chemical and physical methods of treating contaminated soil are costly, time-consuming, and less effective. Phytoremediation using ornamental plants is a safe and effective method for the treatment of heavy metal-polluted soil due to their rapid growth and accumulation of biomass, high heavy metal tolerance, and non-edible nature. The present study is the first attempt for the meta-analysis of existing literature on Cd accumulation and translocation by ornamental plants. The uptake and transfer capacity of ornamental plants was measured using the bio-concentration factor (BCF) and translocation factor (TF). The results indicate that ornamental plants have varying Cd-absorption capacities. Among the 49 plant species identified from 31 articles, Helianthus annuus (BCF = 5.785), Impatiens glandulifera (BCF = 4.722), and Crassocephalum crepidioides (BCF = 3.623) represented higher accumulation capacity, whereas Rorippa globosa (TF = 1.653) and Sedum spectabile Boreau (TF = 1.579) represented significantly higher translocation capacity for Cd. The contribution of various environmental factors in influencing BCF was obtained through multiple linear regression analysis. Results showed that soil pH was the major factor influencing the BCF. To further explain the influence of four main factors that are soil pH, soil organic matter (SOM), cation exchange capacity (CEC), and soil Cd concentration on the accumulation efficiency of ornamental plants, a subgroup meta-analysis was performed. Results of the subgroup meta-analysis revealed that the BCF is negatively correlated with the soil pH and SOM, while the estimated limit of soil Cd concentration for growing ornamental plants was up to 50 mg/kg. Results of this study indicate that choosing a native hyperaccumulator is not the sole key to the success of a phytoremediation design, rather the conditions of the pedosphere will determine the regulating factor for efficient removal. In order to overcome the issue of recirculation and gradual release in the rhizosphere, it is important to match the type of hyperaccumulators to the soil environment (pH, CEC, SOM, etc.) to achieve maximum translocation and desired removal. This study will help researchers to pair the right plant with environmental conditions and customize more efficient phytoremediation systems.
Collapse
Affiliation(s)
- Anil Kumar Haritash
- Environmental Microbiology and Bioremediation Laboratory, Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
5
|
Deng X, Liu R, Hou L. Promotion effect of graphene on phytoremediation of Cd-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74319-74334. [PMID: 35635663 DOI: 10.1007/s11356-022-20765-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Echinacea purpurea (L.) Moench was selected as a remediation plant in this study, and different concentrations of graphene oxide (GO) were added to Cd-contaminated soil. Through pot experiments, the effect of E. purpurea on Cd-contaminated soil was determined at 60 days, 120 days, and 150 days. A preliminary study on the remediation mechanism of GO was explored through changes in the forms of Cd in the rhizosphere soil, soil pH, and soil functional groups. Results showed that the optimal concentration of GO was 0.4 g/kg, and under the condition, the accumulation of Cd in the roots of E. purpurea was as high as 113.69 ± 23.86 mg/kg, and the maximum EF reached 5.87 ± 1.34. Compared with those of the control group, accumulated Cd concentration and EF in the roots increased by 60.34% and 2.32, respectively. Correlation analysis showed that the absorption and accumulation of Cd was negatively correlated with the exchangeable Cd content at 120 days, and the exchangeable Cd was negatively correlated with the relative content of functional groups in the soil with 0.4 g/kg GO (E2). The artificial application of GO to the soil can be used as an effective way to improve the effect of E. purpurea in the remediation of Cd soil pollution, and it has great application potential in the stabilization of plants and vegetations and restoration of high-concentration Cd-contaminated soil.
Collapse
Affiliation(s)
- Xingyu Deng
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Rui Liu
- Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| | - Liqun Hou
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 100016, China
| |
Collapse
|
6
|
Huang Q, Qiu W, Yu M, Li S, Lu Z, Zhu Y, Kan X, Zhuo R. Genome-Wide Characterization of Sedum plumbizincicola HMA Gene Family Provides Functional Implications in Cadmium Response. PLANTS 2022; 11:plants11020215. [PMID: 35050103 PMCID: PMC8779779 DOI: 10.3390/plants11020215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
Heavy-metal ATPase (HMA), an ancient family of transition metal pumps, plays important roles in the transmembrane transport of transition metals such as Cu, Zn, Cd, and Co. Although characterization of HMAs has been conducted in several plants, scarcely knowledge was revealed in Sedum plumbizincicola, a type of cadmium (Cd) hyperaccumulator found in Zhejiang, China. In this study, we first carried out research on genome-wide analysis of the HMA gene family in S. plumbizincicola and finally identified 8 SpHMA genes and divided them into two subfamilies according to sequence alignment and phylogenetic analysis. In addition, a structural analysis showed that SpHMAs were relatively conserved during evolution. All of the SpHMAs contained the HMA domain and the highly conserved motifs, such as DKTGT, GDGxNDxP, PxxK S/TGE, HP, and CPx/SPC. A promoter analysis showed that the majority of the SpHMA genes had cis-acting elements related to the abiotic stress response. The expression profiles showed that most SpHMAs exhibited tissue expression specificity and their expression can be regulated by different heavy metal stress. The members of Zn/Co/Cd/Pb subgroup (SpHMA1-3) were verified to be upregulated in various tissues when exposed to CdCl2. Here we also found that the expression of SpHMA7, which belonged to the Cu/Ag subgroup, had an upregulated trend in Cd stress. Overexpression of SpHMA7 in transgenic yeast indicated an improved sensitivity to Cd. These results provide insights into the evolutionary processes and potential functions of the HMA gene family in S. plumbizincicola, laying a theoretical basis for further studies on figuring out their roles in regulating plant responses to biotic/abiotic stresses.
Collapse
Affiliation(s)
- Qingyu Huang
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
| | - Shaocui Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
| | - Yue Zhu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China;
- Correspondence: (X.K.); (R.Z.); Tel.: +86-139-5537-2268 (X.K.); +86-0571-63311860 (R.Z.)
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (W.Q.); (M.Y.); (S.L.); (Z.L.); (Y.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (X.K.); (R.Z.); Tel.: +86-139-5537-2268 (X.K.); +86-0571-63311860 (R.Z.)
| |
Collapse
|