1
|
Shaban YA, Orif MI, Ghandourah MA, Turki AJ, Alorfi HS, Al-Boqami M, Althagbi HI, Alarif WM. Green synthesis of Ag/V 2O 5 and Ag/V 2O 5-curdlan nanocomposites from Sargassum latifolium extract for enhanced antimicrobial and antioxidant activities. Int J Biol Macromol 2025; 301:140472. [PMID: 39892540 DOI: 10.1016/j.ijbiomac.2025.140472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
The emergence of clinic-isolated bacteria and their ability to develop resistance mechanisms against conventional antimicrobials highlights the urgent need for novel, sustainable antimicrobial agents. This study explores the synthesis of Ag/V2O5 nanocomposites (NCs) using Sargassum latifolium extract, which is incorporated into a curdlan biocompatible matrix. The developed nanocomposites are evaluated for their antioxidant and antimicrobial activities, with a particular focus on their effectiveness against pathogenic bacteria. The applied method in this work combines green synthesis with the process of uniform distribution of nanoparticles to a biocompatible polymer, which is a way forward towards the design of efficient biocompatible antimicrobial systems. The Ag/V2O5 nanoparticles prepared with green synthesis were characterized by UV-Vis absorption, FTIR, XRD, SEM, EDX, zeta potential, DLS, and TEM. It has also been established that the antimicrobial property of the curdlan matrix has been enhanced with the addition of Ag/V2O5 nanoparticles in the incorporated curdlan composites. Ag/V2O5-curdlan also showed significantly enhanced antimicrobial activity against Gram-negative bacteria and Gram-positive bacteria thus implying enhanced antimicrobial action of the prepared nanocomposite by increasing the size of the bacterial zone of inhibition from 14.0 to 18.0 mm. Besides, the curdlan NC in the presence of Ag/V2O5 demonstrated an even lower value of MIC against Rhizoctonia solani (140.156 μg/mL) in comparison with Ag/V2O5 NC (226.413 μg/mL) thus predicting Augmented antifungal activity. Through performing TEM analysis, we have observed significant morphological changes in R. solani strain when the Ag/V2O5-curdlan NC was used. However, the Ag/V2O5-curdlan NC had a notably high antioxidant activity with IC50 of 0.302 mg/mL to DPPH radical scavenging assay. These results reaffirm the enhancement in antimicrobial properties when Ag/V2O5 and curdlan work together and agree with the objective of this work to propose novel and worthwhile nanomaterials for potentially applicable areas like food packaging or agriculture with insignificant harm to the environment.
Collapse
Affiliation(s)
- Yasser A Shaban
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed I Orif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adnan J Turki
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hajer S Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Modi Al-Boqami
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hanan I Althagbi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Walied M Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
El-Hosari DG, Mokhtar FA, Khalaf HA, Ibrahim ARN, Mohamed RM, Makhlof MEM. Minimum-Run Resolution IV Design for Optimized Bio Removal of Fe 2+ Using Enteromorpha intestinalis Aqueous Extract and Its Extract-Coated Silver Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2024; 14:40. [PMID: 39795301 PMCID: PMC11722701 DOI: 10.3390/plants14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
Biosorbents have demonstrated considerable potential for the remediation of metals in aqueous environments. An aqueous extract of Enteromorpha intestinalis L. (EiE) and its extract-coated silver nanoparticles have been prepared and employed for the removal of iron. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-visible spectroscopy, transmission electron microscopy (TEM), gas chromatography-mass spectroscopy (GC-MS), and zeta potential were employed to characterize the prepared biosorbents. The adsorption properties of the biosorbents were investigated in batch experiments, with a range of factors taken into account, including pH, contact time, initial ion concentrations, biosorbent dosage, and temperature. A minimum-run resolution IV design (MRR-IV) was developed with the objective of optimizing the removal efficiency. The mechanisms of adsorption were investigated using both the Langmuir and Freundlich isotherms. Kinetic studies were conducted using the pseudo-first-order and pseudo-second-order models. A variety of active constituents, including organic acids, lipids, alcohols, and terpenes, were identified through the use of GC-MS, with the findings supported by FTIR spectra. Transmission electron microscopy (TEM) revealed that the nanoparticle size ranged from 5 to 44 nm, while X-ray diffraction (XRD) demonstrated a high degree of crystallinity. A screening study employing the MRR-IV methodology, facilitated by the Design-Experiment, Ver 13., indicates that three factors exert a considerable influence on the biosorption process. The study demonstrated that the biosorption mechanism is pH-dependent, with an optimal pH of 5. The adsorption performance was found to follow Freundlich isothermal models and pseudo-first-order kinetics.
Collapse
Affiliation(s)
- Doaa G. El-Hosari
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Fatma A. Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt
- Fujairah Research Centre, Sakamkam Road, Sakamkam, Fujairah 00000, United Arab Emirates
| | - Hussein A. Khalaf
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt;
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rehab M. Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Al-Maqrizi Street, Roxy, Cairo 11341, Egypt;
| | - Mofida E. M. Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
3
|
Akl FMA, El-Sheekh MM, Ahmed SI, Makhlof MEM. Bioadsorption of crude petroleum oil from seawater using the marine alga Hormophysa triquetra mediated silver nanoparticles. MARINE POLLUTION BULLETIN 2024; 206:116763. [PMID: 39079478 DOI: 10.1016/j.marpolbul.2024.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024]
Abstract
The biosynthesis of silver nanoparticles, both economically and environmentally advantageous, uses algae extracts. In the current work, we extracted the marine brown alga Hormophysa triquetra (C. Agardh) kützing and used it to make silver nanoparticles (HAgNPs) which are characterized via UV-visible spectrophotometers, Transmission Electron Microscopy (TEM), Zeta potential, and FTIR then used them in the bio adsorption of crude petroleum oil from seawater, comparing them with H. triquetra aqueous extract. UV scan of the phycosynthesized silver nanoparticles achieved the highest absorption at 369 nm. TEM showed that the synthesized HAgNPs occur with smooth, spherical, and semispherical forms with sizes ranging from 12.04 to 20.67 nm, zeta potential illustrated that HAgNPs were charged with -22.1, The H. triquetra aqueous extract's FTIR examination identified several active groups like - OH, -C=C-, NO, -CH, CCl, -C ≡ C-H: CH which are responsible for the bioadsorption of crude petroleum oil. When extracting crude petroleum oil from seawater, HAgNPs worked better than its aqueous extract. The maximum removal % for light n-alkanes (Ln-alk), heavy n-alkanes (Hn-alk), and PAHs were 70.4 %, 71.63 %, and 75.38 % respectively for H. triquetra aqueous extract with adsorption capacity 889, 511, 273 μg/g at salinity 36 % and pH 5, while in case of HAgNPs the results were 75.81 %, 77.15 %, and 80.56 %, respectively with adsorption capacity 957, 550, 292 μg/g at the same salinity and pH.
Collapse
Affiliation(s)
- Faiza M A Akl
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Suzan I Ahmed
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, El-Bahira, Egypt
| |
Collapse
|
4
|
Swathilakshmi AV, Poonkothai M. Ecofriendly Approach on the Removal of Reactive Orange 107 from Aqueous Solutions Using Cladophora Species as a Novel Biosorbent. Mol Biotechnol 2024; 66:500-516. [PMID: 37245201 DOI: 10.1007/s12033-023-00764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/29/2023] [Indexed: 05/29/2023]
Abstract
The efficiency of Cladophora species for the removal of Reactive Orange 107 (RO107) from the aqueous solution was evaluated through batch adsorption studies by optimising various process parameters such as pH (3-8), dye concentration (100-500 mg/l), biosorbent concentration (100-500 mg/l), temperature (25-45 °C) and contact time (12-108 h). The results revealed that the optimum conditions for RO107 decolourisation (87%) was found on 72 h of incubation with 100 mg/l dye concentration amended with 200 mg/l biosorbent at pH 6 at 25 °C. The mechanism of dye adsorption was evaluated using isotherms, kinetics and thermodynamic models. The experimental data fitted well with Langmuir isotherm and pseudo-second-order kinetic models. Thermodynamic studies revealed that the adsorption process was endothermic, spontaneous and feasible in nature. Recovery of RO107 from the Cladophora sp. was maximum when 0.1 M HNO3 was used as an eluent. UV-Visible, FT-IR and SEM analyses reveal the interaction between the biosorbent-adsorbate and confirm the process of decolourisation by Cladophora sp. In order to evaluate the nature of the untreated and treated dye solutions, toxicological studies were conducted and the results revealed that the treated dye solution was non- toxic as compared with untreated dye solution. The results of the docking study proved that there was a substantial binding energy between RO107 and the protein (Cytochrome C6) of Cladophora sp. Hence, Cladophora sp. proves to be a promising biosorbent to decolourise RO107 and its potential can be explored in the textile sectors.
Collapse
Affiliation(s)
- A V Swathilakshmi
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India
| | - M Poonkothai
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
5
|
El-Sheekh MM, AlKafaas SS, Rady HA, Abdelmoaty BE, Bedair HM, Ahmed AA, El-Saadony MT, AbuQamar SF, El-Tarabily KA. How Synthesis of Algal Nanoparticles Affects Cancer Therapy? - A Complete Review of the Literature. Int J Nanomedicine 2023; 18:6601-6638. [PMID: 38026521 PMCID: PMC10644851 DOI: 10.2147/ijn.s423171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
The necessity to engineer sustainable nanomaterials for the environment and human health has recently increased. Due to their abundance, fast growth, easy cultivation, biocompatibility and richness of secondary metabolites, algae are valuable biological source for the green synthesis of nanoparticles (NPs). The aim of this review is to demonstrate the feasibility of using algal-based NPs for cancer treatment. Blue-green, brown, red and green micro- and macro-algae are the most commonly participating algae in the green synthesis of NPs. In this process, many algal bioactive compounds, such as proteins, carbohydrates, lipids, alkaloids, flavonoids and phenols, can catalyze the reduction of metal ions to NPs. In addition, many driving factors, including pH, temperature, duration, static conditions and substrate concentration, are involved to facilitate the green synthesis of algal-based NPs. Here, the biosynthesis, mechanisms and applications of algal-synthesized NPs in cancer therapy have been critically discussed. We also reviewed the effective role of algal synthesized NPs as anticancer treatment against human breast, colon and lung cancers and carcinoma.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant E Abdelmoaty
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Heba M Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abdelhamid A Ahmed
- Plastic Surgery Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
6
|
Akl FMA, Ahmed SI, El-Sheekh MM, Makhlof MEM. Bioremediation of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using seaweeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104814-104832. [PMID: 37713082 PMCID: PMC10567841 DOI: 10.1007/s11356-023-29549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023]
Abstract
The removal of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using three dried seaweeds Ulva intestinalis Linnaeus (green alga), Sargassum latifolium (Turner) C.Agardh (brown alga), and Corallina officinalis Kützing (red alga) has been shown to evaluate their potential usage as inexpensive adsorbents. Under natural environmental conditions, numerous analytical methods, including zeta potential, energy dispersive X-ray spectroscopy (EDX), SEM, and FT-IR, are used in this study. The results showed that n-alkanes and polycyclic aromatic hydrocarbons adsorption increased with increasing contact time for all three selected algae, with a large removal observed after 15 days, while the optimal contact time for heavy metal removal was 3 h. S. latifolium dry biomass had more potential as bioadsorbent, followed by C. officinalis and then U. intestinalis. S. latifolium attained removal percentages of 65.14%, 72.50%, and 78.92% for light n-alkanes, heavy n-alkanes, and polycyclic aromatic hydrocarbons (PAHs), respectively, after 15 days. Furthermore, it achieved removal percentages of 94.14, 92.62, 89.54, 87.54, 82.76, 80.95, 77.78, 73.02, and 71.62% for Mg, Zn, Cu, Fe, Cr, Pb, Cd, Mn, and Ni, respectively, after 3 h. Carboxyl and hydroxyl from FTIR analysis took part in wastewater treatment. The zeta potentials revealed that algal cells have a negatively charged surface, and the cell surface of S. latifolium has a more negative surface charge than U. intestinalis and C. officinalis. Our study suggests that seaweeds could play an important role in wastewater treatment and thus help as an economical, effective, and ecofriendly bioremediation system for ecological health and life protection.
Collapse
Affiliation(s)
- Faiza M A Akl
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Suzan I Ahmed
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
7
|
El-Sheekh MM, Deyab MA, Hassan NI, Abu Ahmed SE. Bioremediation of malachite green dye using sodium alginate, Sargassum latifolium extract, and their silver nanoparticles. BMC Chem 2023; 17:108. [PMID: 37653427 PMCID: PMC10472598 DOI: 10.1186/s13065-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
INTRODUCTION The textile, paper, rubber, plastic, leather, cosmetics, pharmaceutical, and food sectors extensively use malachite green (MG). In spite of this, it has mutagenic, carcinogenic, teratogenic, and, in some circumstances causes chronic respiratory disease. OBJECTIVES In this work, we used sodium alginate, Sargassum latifolium aqueous extract, and their silver nanoparticles to test their potential as inexpensive adsorbent agents to remove malachite green dye from aqueous solutions. METHODS The removal rate of MG was determined using a series of bioadsorption experiments. Besides, the effect of different factors on bioadsorption, such as pH, adsorbent dose, contact time (min), and different concentrations of MG dye was investigated. RESULTS The removal efficiency of MG dye by alginate nanoparticles, alginate, Sargassum latifolium aqueous extract, and S. latifolium aqueous extract nanoparticles was 91, 82, 84, and 68 respectively. The optimal conditions for bioadsorption of malachite green dye were pH 7, a contact time of 180 min, and an adsorbent dose of 0.02 g. The adsorption isotherm was fitted to Langmuir and Freundlich isotherm. Also, UV and FT-IR before and after the bioadsorption of MG were performed to confirm the bioadsorption process. CONCLUSION Our results indicated that alginate nanoparticles were the most effective bioadsorbent agent.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed A Deyab
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta El-Gededa, 34517, Egypt
| | - Nagwa I Hassan
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta El-Gededa, 34517, Egypt
| | - Seham E Abu Ahmed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta El-Gededa, 34517, Egypt
| |
Collapse
|