1
|
Gao S, Li S, Cao S, Zhong H, He Z. Disclosing the key role of Fe/As/Cu in community co-occurrence and microbial recruitment in metallurgical ruins. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135889. [PMID: 39362120 DOI: 10.1016/j.jhazmat.2024.135889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Mining activities have led to the persistent presence of substantial heavy metals at metallurgical sites. However, the impact of long-term and complex heavy metal pollution in metallurgical ruins on the structure and spatial shift of microbiome remains unclear. In this study, we focused on various types of metallurgical sites to uncover the occurrence of heavy metals in abandoned mines and the response patterns of microbial communities. The results indicate that mining activities have caused severe exceedances of multiple heavy metals, with AsBio, CuBio, and FeBio being the primary factors affecting community structure and function. Co-occurrence network analyses suggest that several genera, including Ellin6515, Cupriavidus, Acidobacteria genus RB41, Vicinamibacteraceae, Blastococcus, and Sphingomonas, may play significant roles in the synergistic metabolism of communities responding to Fe-Cu-As stress. Although random dispersal contributed to community migration, null models emphasized that variable selection predominates in the spatial turnover of community composition. Additionally, metagenomic prediction (PICRUSt2) identified key genes involved in stress and detoxification strategies of heavy metals. The composite heavy metal stress strengthened the relationship between network structure and the potential function of the community, along with critical ecosystem functions. Our findings demonstrated that microbial interactions were crucial for ecosystem management and the ecological consequences of heavy metal pollution remediation.
Collapse
Affiliation(s)
- Shuai Gao
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Shuangfeng Cao
- School of Life Science, Central South University, Changsha 410012, China
| | - Hui Zhong
- School of Life Science, Central South University, Changsha 410012, China.
| | - Zhiguo He
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China; Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410100, China.
| |
Collapse
|
2
|
Peng M, Deng G, Hu C, Hou X, Wang Z. Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly. Microorganisms 2024; 12:2458. [PMID: 39770660 PMCID: PMC11677749 DOI: 10.3390/microorganisms12122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, Rhodococcus qingshengii PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils. Exposure to sodium selenite initially led to reductions in microbial diversity and a shift in dominant bacterial groups, particularly an increase in Actinobacteria and a decrease in Acidobacteria. Sodium selenite significantly reduced microbial diversity and simplified co-occurrence networks, whereas inoculation with strain PM1 partially reversed these effects by enhancing community complexity. Ecological modeling, including the normalized stochasticity ratio (NST) and Sloan's neutral community model (NCM), suggested that stochastic processes predominated in the assembly of bacterial communities under selenium stress. Null model analysis further revealed that heterogeneous selection and drift were primary drivers of community turnover, with PM1 inoculation promoting species dispersal and buffering against the negative impacts of selenium. These findings shed light on microbial community assembly mechanisms under selenium contamination and highlight the potential of strain PM1 for the bioremediation of selenium-affected soils.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Guangai Deng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Chongyang Hu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| | - Xue Hou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| |
Collapse
|
3
|
Kumar V, Ameen F, Verma P. Unraveling the shift in bacterial communities profile grown in sediments co-contaminated with chlorolignin waste of pulp-paper mill by metagenomics approach. Front Microbiol 2024; 15:1350164. [PMID: 38529176 PMCID: PMC10961449 DOI: 10.3389/fmicb.2024.1350164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Pulp-paper mills (PPMs) are known for consistently generating a wide variety of pollutants, that are often unidentified and highly resistant to environmental degradation. The current study aims to investigate the changes in the indigenous bacterial communities profile grown in the sediment co-contaminated with organic and inorganic pollutants discharged from the PPMs. The two sediment samples, designated PPS-1 and PPS-2, were collected from two different sites. Physico-chemical characterization of PPS-1 and PPS-2 revealed the presence of heavy metals (mg kg-1) like Cu (0.009-0.01), Ni (0.005-0.002), Mn (0.078-0.056), Cr (0.015-0.009), Pb (0.008-0.006), Zn (0.225-0.086), Fe (2.124-0.764), Al (3.477-22.277), and Ti (99.792-45.012) along with high content of chlorophenol, and lignin. The comparative analysis of organic pollutants in sediment samples using gas chromatography-mass spectrometry (GC-MS) revealed the presence of major highly refractory compounds, such as stigmasterol, β-sitosterol, hexadecanoic acid, octadecanoic acid; 2,4-di-tert-butylphenol; heptacosane; dimethyl phthalate; hexachlorobenzene; 1-decanol,2-hexyl; furane 2,5-dimethyl, etc in sediment samples which are reported as a potential toxic compounds. Simultaneously, high-throughput sequencing targeting the V3-V4 hypervariable region of the 16S rRNA genes, resulted in the identification of 1,249 and 1,345 operational taxonomic units (OTUs) derived from a total of 115,665 and 119,386 sequences read, in PPS-1 and PPS-2, respectively. Analysis of rarefaction curves indicated a diversity in OTU abundance between PPS-1 (1,249 OTUs) and PPS-2 (1,345 OTUs). Furthermore, taxonomic assignment of metagenomics sequence data showed that Proteobacteria (55.40%; 56.30%), Bacteoidetes (11.30%; 12.20%), and Planctomycetes (5.40%; 4.70%) were the most abundant phyla; Alphproteobacteria (20.50%; 23.50%), Betaproteobacteria (16.00%; 12.30%), and Gammaproteobacteria were the most recorded classes in PPS-1 and PPS-2, respectively. At the genus level, Thiobacillus (7.60%; 4.50%) was the most abundant genera grown in sediment samples. The results indicate significant differences in both the diversity and relative abundance of taxa in the bacterial communities associated with PPS-2 when compared to PPS-1. This study unveils key insights into contaminant characteristics and shifts in bacterial communities within contaminated environments. It highlights the potential for developing efficient bioremediation techniques to restore ecological balance in pulp-paper mill waste-polluted areas, stressing the importance of identifying a significant percentage of unclassified genera and species to explore novel genes.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
4
|
Chen M, Kong Y, Zheng W, Liu J, Wang Y, Wang Y. Accumulation and risk assessment of mercury in soil as influenced by mercury mining/smelting in Tongren, Southwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:83. [PMID: 38367093 DOI: 10.1007/s10653-024-01860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
To investigate the influence of mercury (Hg) mining/smelting on the surrounding soil environment, ninety soil samples were collected around Hg mining/smelting areas in Tongren city, Guizhou Province, Southwest China. The total mercury (THg), methylmercury (MeHg), bioavailability and fractions of Hg in the soil and their potential risk were evaluated. The results showed that Hg mining/smelting significantly increased the soil pH and decreased the soil organic matter content (p < 0.05). The THg content in the surrounding soil was much higher than that at the control site, with almost all the samples exceeding the national standard in China (3.4 mg/kg, GB15618-2018). Similarly, the concentrations of MeHg (0.09-2.74 μg/kg) and bioavailable Hg (0.64-62.94 μg/kg) in these soil samples were also significantly higher than those in the control site. However, the MeHg/THg ratio was significantly lower in mining/smelting influenced soils (0.01-0.68%) than in control soils (0.60-3.72%). Fraction analysis revealed that residual (RES-Hg) and organic matter-bounded (OM-Hg) Hg accounted for more than 50% of the THg. Ecological risk assessment revealed that the potential ecological risk for most of the Hg mining/smelting-influenced soils (30.16 ≤ Er ≤ 2280.02) were higher than those at the control site (15.12 ≤ Er ≤ 27.1). In addition, these Hg mining/smelting-influenced soils posed acceptable noncarcinogenic risks to adults (except for two soil samples), with hazard indices (HIs) ranging from 0.04 to 1.11 and a mean HI of 0.44. However, children suffer serious noncarcinogenic risks, with HIs ranging from 0.34 to 7.43 and a mean HI of 3.10.
Collapse
Affiliation(s)
- Ming Chen
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yuke Kong
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Wenxiu Zheng
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Jinhui Liu
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China
| | - Yong Wang
- School of Material and Chemical Engineering, Tongren University, Tongren, 554300, China
| | - Yangyang Wang
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China.
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|