1
|
Lin S, Zhou J, Xiao Y, Neary B, Teng Y, Qiu P. Integrative analysis of TCGA data identifies miRNAs as drug-specific survival biomarkers. Sci Rep 2022; 12:6785. [PMID: 35474090 PMCID: PMC9042876 DOI: 10.1038/s41598-022-10662-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
Biomarkers predictive of drug-specific outcomes are important tools for personalized medicine. In this study, we present an integrative analysis to identify miRNAs that are predictive of drug-specific survival outcome in cancer. Using the clinical data from TCGA, we defined subsets of cancer patients who suffered from the same cancer and received the same drug treatment, which we call cancer-drug groups. We then used the miRNA expression data in TCGA to evaluate each miRNA’s ability to predict the survival outcome of patients in each cancer-drug group. As a result, the identified miRNAs are predictive of survival outcomes in a cancer-specific and drug-specific manner. Notably, most of the drug-specific miRNA survival markers and their target genes showed consistency in terms of correlations in their expression and their correlations with survival. Some of the identified miRNAs were supported by published literature in contexts of various cancers. We explored several additional breast cancer datasets that provided miRNA expression and survival data, and showed that our drug-specific miRNA survival markers for breast cancer were able to effectively stratify the prognosis of patients in those additional datasets. Together, this analysis revealed drug-specific miRNA markers for cancer survival, which can be promising tools toward personalized medicine.
Collapse
Affiliation(s)
- Shuting Lin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Jie Zhou
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Yiqiong Xiao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Bridget Neary
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA
| | - Peng Qiu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, USA.
| |
Collapse
|
2
|
Hosokawa M, Seiki R, Iwakawa S, Ogawara KI. Combination of azacytidine and curcumin is a potential alternative in decitabine-resistant colorectal cancer cells with attenuated deoxycytidine kinase. Biochem Biophys Res Commun 2021; 578:157-162. [PMID: 34571370 DOI: 10.1016/j.bbrc.2021.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
Decitabine (DAC), a DNA methyltransferase (DNMT) inhibitor is a novel anti-cancer drug regulating epigenetic mechanisms. Similar to conventional anti-cancer drugs, drug resistance to DAC also has been reported, resulting in tumor recurrence. Our previous study using colorectal cancer HCT116 cells found the decrease in deoxycytidine kinase (dCK) (activation enzyme of DAC) and the increase in cytidine deaminase (inactivation enzyme of DAC) in acquired DAC-resistant HCT116 (HCT116/DAC) cells. The aim of our study was to clarify the involvement of dCK and CDA in DAC resistance. In order to tackle DAC resistance, it was also examined whether other DNMT inhibitors such as azacytidine (AC) and polyphenols are effective in DAC-resistant cancer cells. When dCK siRNA was transfected into HCT116 cells, IC50 value of DAC increased by about 74-fold and reached that of HCT116/DAC cells with attenuated dCK. dCK siRNA to HCT116 cells also abolished DNA demethylation effects of DAC. In contrast, CDA siRNA to HCT116 cells did not influence the efficacy of DAC. In addition, CDA siRNA to HCT116/DAC cells with increased CDA did not restore the compromised effects of DAC. These results suggested that attenuated dCK but not increased CDA mainly contributed to DAC resistance. Regarding dCK in HCT116/DAC cells, a point mutation with amino acid substitution was observed while the product size and expression of mRNA coding region did not change, suggesting that dCK protein was decreased by post-transcriptional regulation. AC and polyphenols showed no cross-resistance in HCT116/DAC cells. AC but not polyphenols exerted DNA demethylation effect. Among polyphenols, curcumin (Cur) showed the most synergistic cytotoxicity in combination with AC while DNA demethylation effect of AC was partly maintained. Taken together, combination of AC and Cur would be a promising alternative to tackle DAC resistance mainly due to attenuated dCK.
Collapse
Affiliation(s)
- Mika Hosokawa
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, 658-8558, Japan.
| | - Risako Seiki
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, 658-8558, Japan
| | - Seigo Iwakawa
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, 658-8558, Japan
| | - Ken-Ichi Ogawara
- Department of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe, 658-8558, Japan
| |
Collapse
|
3
|
Levin M, Stark M, Ofran Y, Assaraf YG. Deciphering molecular mechanisms underlying chemoresistance in relapsed AML patients: towards precision medicine overcoming drug resistance. Cancer Cell Int 2021; 21:53. [PMID: 33446189 PMCID: PMC7809753 DOI: 10.1186/s12935-021-01746-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) remains a devastating disease with a 5-year survival rate of less than 30%. AML treatment has undergone significant changes in recent years, incorporating novel targeted therapies along with improvements in allogeneic bone marrow transplantation techniques. However, the standard of care remains cytarabine and anthracyclines, and the primary hindrance towards curative treatment is the frequent emergence of intrinsic and acquired anticancer drug resistance. In this respect, patients presenting with chemoresistant AML face dismal prognosis even with most advanced therapies. Herein, we aimed to explore the potential implementation of the characterization of chemoresistance mechanisms in individual AML patients towards efficacious personalized medicine. Methods Towards the identification of tailored treatments for individual patients, we herein present the cases of relapsed AML patients, and compare them to patients displaying durable remissions following the same chemotherapeutic induction treatment. We quantified the expression levels of specific genes mediating drug transport and metabolism, nucleotide biosynthesis, and apoptosis, in order to decipher the molecular mechanisms underlying intrinsic and/or acquired chemoresistance modalities in relapsed patients. This was achieved by real-time PCR using patient cDNA, and could be readily implemented in the clinical setting. Results This analysis revealed pre-existing differences in gene expression levels between the relapsed patients and patients with lasting remissions, as well as drug-induced alterations at different relapse stages compared to diagnosis. Each of the relapsed patients displayed unique chemoresistance mechanisms following similar treatment protocols, which could have been missed in a large study aimed at identifying common drug resistance determinants. Conclusions Our findings emphasize the need for standardized evaluation of key drug transport and metabolism genes as an integral component of routine AML management, thereby allowing for the selection of treatments of choice for individual patients. This approach could facilitate the design of efficacious personalized treatment regimens, thereby reducing relapse rates of therapy refractory disease.
Collapse
Affiliation(s)
- May Levin
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| |
Collapse
|
4
|
Bai L, Peng X, Sun R. Knockdown of circPRKCA Restrained Cell Growth, Migration, and Invasion of NSCLC Cells Both in vitro and in vivo via Regulating miR-330-5p/PDK1/AKT Pathway. Cancer Manag Res 2020; 12:9125-9137. [PMID: 33061606 PMCID: PMC7524182 DOI: 10.2147/cmar.s258370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Protein kinase Cα (PRKCA) is an oncogene in multiple cancers including non-small-cell lung cancer (NSCLC) and can be transcribed into a number of circular PRKCAs (circPRKCAs). Here, we aimed to elaborate the role and mechanism of circPRKCA_024 (circPRKCA) in malignant progression of NSCLC. Methods Expression of circPRKCA, miRNA (miR)-330-5p and 3-phosphoinositide-dependent protein kinase-1 (PDK1) was measured by real-time quantitative PCR and Western blotting, and their relationship was testified by dual-luciferase reporter assay, RNA immunoprecipitation, and RNA pull-down assay. Cell behaviors were evaluated by cell counting kit (CCK)-8, flow cytometry, and transwell assays. AKT activity was confirmed by Western blotting. Xenograft experiment assessed tumor growth. Results Expression of circPRKCA and PDK1 was upregulated, and miR-330-5p was downregulated in NSCLC tissues and cell lines. High circPRKCA was correlated with TNM stage and lymph node metastasis of NSCLC patients. Silencing circPRKCA could suppress cell viability, migration, and invasion in A549 and H1299 cells, accompanied with apoptosis rate promotion. Moreover, circPRKCA knockdown retarded tumor growth of A549 cells in vivo. Molecularly, miR-330-5p was sponged by circPRKCA, and PDK1 was a target of miR-330-5p. Inhibiting miR-330-5p could attenuate the suppression of circPRKCA knockdown on cell growth, migration, and invasion; contrarily, promoting miR-330-5p caused inhibition on those cell behaviors by downregulating PDK1. Analogously, AKT activity was suppressed by circPRKCA downregulation and miR-330-5p upregulation in NSCLC cells both in vitro and in vivo. Conclusion Depleting circPRKCA inhibited PDK1 to suppress NSCLC cell malignant behaviors through miR-330-5p/PDK1/AKT pathway.
Collapse
Affiliation(s)
- Lanxiang Bai
- Disinfection Supply Center, Yantai Yuhuangding Hospital, Yantai 264000, Shandong, People's Republic of China
| | - Xiaonu Peng
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai 264000, Shandong, People's Republic of China
| | - Ruimei Sun
- Department of Laboratory, Weifang No.2 People's Hospital, Weifang 261041, Shandong, People's Republic of China
| |
Collapse
|
5
|
Shirjang S, Mansoori B, Mohammadi A, Shajari N, H G Duijf P, Najafi S, Abedi Gaballu F, Nofouzi K, Baradaran B. miR-330 Regulates Colorectal Cancer Oncogenesis by Targeting BACH1. Adv Pharm Bull 2020; 10:444-451. [PMID: 32665904 PMCID: PMC7335988 DOI: 10.34172/apb.2020.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022] Open
Abstract
Purpose: Based on WHO report, colorectal cancer (CRC) is the second cause of death among patients with cancer worldwide. Dysregulation of miRNAs expressions has been demonstrated in different human cancers, especially CRC. Studies have shown that miR-330 could act as both TS-miR and/or oncomiR in different types of cancers. BACH1 is also identified as a transcription factor, which is involved in ontogenesis. In this study, we evaluated the CRC suppression via silencing of BACH1 by small silencer molecule called miR-330. Methods: Firstly, we analyzed the BACH1, miR-330-3p and miR-330-5p expressions according to the colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) project established from a patient of the colon and rectal cancer patients in The Cancer Genome Atlas (TCGA) database. The targeting of BACH1 via miR-330 in human CRC cells was evaluated by Vejnar bioinformatics methods, and confirmed by qRT-PCR and western blot analysis. Proliferation was performed by MTT assay. The MMP9, CXCR4, and VEGFR proteins were measured by western blotting. Results: The analysis of BACH1, miR-330-3p, and miR-330-5p expressions according to the COAD and READ projects showed that BACH1 was overexpressed, but miR-330-3p and miR330-5p were reduced in CRC tumors compared to normal controls. The miR-330 induction prevented proliferation of CRC cell by targeting BACH1 mRNA, which represses MMP9, C-X-C chemokine receptor type 4 (CXCR4), and vascular endothelial growth factor receptor (VEGFR) proteins expressions. Conclusion: Our results suggested that BACH1 is a potential target for miR-330 in CRC cells. The miR-330 induction inhibits CRC cells proliferation by suppressing BACH1 expression in posttranscriptional level. It was suggested that targeting of BACH1 via miRNA such as miR-330 could be a valid strategy in the field of CRC targeted therapy via modulating the oncogenic signaling pathway.
Collapse
Affiliation(s)
- Solmaz Shirjang
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Katayoon Nofouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Bioavailability and cytosolic kinases modulate response to deoxynucleoside therapy in TK2 deficiency. EBioMedicine 2019; 46:356-367. [PMID: 31383553 PMCID: PMC6710986 DOI: 10.1016/j.ebiom.2019.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND TK2 is a nuclear gene encoding the mitochondrial matrix protein thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial nucleotide salvage pathway. Deficiency of TK2 activity causes mitochondrial DNA (mtDNA) depletion, which in humans manifests predominantly as a mitochondrial myopathy with onset typically in infancy and childhood. We previously showed that oral treatment of the Tk2 H126N knock-in mouse model (Tk2-/-) with the TK2 substrates, deoxycytidine (dCtd) and thymidine (dThd), delayed disease onset and prolonged median survival by 3-fold. Nevertheless, dCtd + dThd treated Tk2-/- mice showed mtDNA depletion in brain as early as postnatal day 13 and in virtually all other tissues at age 29 days. METHODS To enhance mechanistic understanding and efficacy of dCtd + dThd therapy, we studied the bioavailability of dCtd and dThd in various tissues as well as levels of the cytosolic enzymes, TK1 and dCK that convert the deoxynucleosides into dCMP and dTMP. FINDINGS Parenteral treatment relative to oral treatment produced higher levels of dCtd and dThd and improved mtDNA levels in liver and heart, but did not ameliorate molecular defects in brain or prolong survival. Down-regulation of TK1 correlated with temporal- and tissue-specificity of response to dCtd + dThd. Finally, we observed in human infant and adult muscle expression of TK1 and dCK, which account for the long-term efficacy to dCtd + dThd therapy in TK2 deficient patients. INTERPRETATIONS These data indicate that the cytosolic pyrimidine salvage pathway enzymes TK1 and dCK are critical for therapeutic efficacy of deoxynucleoside therapy for Tk2 deficiency. FUND: National Institutes of Health P01HD32062.
Collapse
|
7
|
Sehati N, Sadeghie N, Mansoori B, Mohammadi A, Shanehbandi D, Baradaran B. MicroRNA-330 inhibits growth and migration of melanoma A375 cells: In vitro study. J Cell Biochem 2019; 121:458-467. [PMID: 31237010 DOI: 10.1002/jcb.29211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 11/09/2022]
Abstract
Melanoma skin cancer is one of the main causes of male cancer-related deaths worldwide. It has been suggested that miR-330-5p can act as a tumor suppressor in various types of cancers. So, in this study, we replaced miR-330 in melanoma cancer cells by vector-based miR-330 to evaluate the effects of this microRNA on the growth and migration inhibition of melanoma cancer cells, and to determine the molecular mechanisms underlying its action. By using the MTT assay, the IC50 of Geneticin antibiotic was obtained as 460 µg/mL. The results of the qRT-PCR showed the increased expression level of miR-330 and decreased expression levels of MMP-9, CXCR4, Vimentin, melanoma cell adhesion molecule, AKT1, and E2F1 messenger RNA in A375 transfected cells. The cytotoxicity assay results demonstrated the inhibition of cancer cells proliferation. Furthermore, the wound healing test results showed a migration reduction of transfected cells with miR-330 compared with nontransfected ones. In addition, 4',6-diamidino-2-phenylindoleLB: Luria-Bertani (DAPI) staining revealed the significant nucleus fragmentation in miR-330 replaced cells, which correspond to apoptosis induction in replaced cells. The results showed that increase in miR-330 expression level could significantly inhibit the tumor cell growth and the migration of melanoma cancer cells.
Collapse
Affiliation(s)
- Nasser Sehati
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navaz Sadeghie
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Hsu MC, Pan MR, Chu PY, Tsai YL, Tsai CH, Shan YS, Chen LT, Hung WC. Protein Arginine Methyltransferase 3 Enhances Chemoresistance in Pancreatic Cancer by Methylating hnRNPA1 to Increase ABCG2 Expression. Cancers (Basel) 2018; 11:cancers11010008. [PMID: 30577570 PMCID: PMC6356582 DOI: 10.3390/cancers11010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer is poorly responsive to chemotherapy due to intrinsic or acquired resistance. Our previous study showed that epigenetic modifying enzymes including protein arginine methyltransferase 3 (PRMT3) are dysregulated in gemcitabine (GEM)-resistant pancreatic cancer cells. Here, we attempt to elucidate the role of PRMT3 in chemoresistance. Overexpression of PRMT3 led to increased resistance to GEM in pancreatic cancer cells, whereas reduction of PRMT3 restored GEM sensitivity in resistant cells. We identified a novel PRMT3 target, ATP-binding cassette subfamily G member 2 (ABCG2), which is known to play a critical role in drug resistance. PRMT3 overexpression upregulated ABCG2 expression by increasing its mRNA stability. Mass spectrometric analysis identified hnRNPA1 as a PRMT3 interacting protein, and methylation of hnRNPA1 at R31 by PRMT3 in vivo and in vitro. The expression of methylation-deficient hnRNPA1-R31K mutant reduced the RNA binding activity of hnRNPA1 and the expression of ABCG2 mRNA. Taken together, this provides the first evidence that PRMT3 methylates the RNA recognition motif (RRM) of hnRNPA1 and promotes the binding between hnRNPA1 and ABCG2 to enhance drug resistance. Inhibition of PRMT3 could be a novel strategy for the treatment of GEM-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, Changhua City 500, Taiwan.
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Chia-Hua Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Yan-Shen Shan
- Department of Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Insitute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Graduate Institute of Medicine, College of Medicine Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
9
|
Chen Y, Liu X, Chen L, Chen W, Zhang Y, Chen J, Wu X, Zhao Y, Wu X, Sun G. The long noncoding RNA XIST protects cardiomyocyte hypertrophy by targeting miR-330-3p. Biochem Biophys Res Commun 2018; 505:807-815. [PMID: 30297107 DOI: 10.1016/j.bbrc.2018.09.135] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are implicated in numerous kinds of cardiovascular diseases, and their vital role in regulating cardiac hypertrophy still needs to be explored. In this study, we demonstrated that lncRNA X-inactive specific transcript (XIST) was upregulated in hypertrophic cardiac of mice and phenylephrine (PE)-treated cardiomyocytes. Next, we observed that inhibition of XIST induced hypertrophic response of cardiomyocyte and overexpression of XIST attenuated cardiomyocyte hypertrophy induced by PE. Furthermore, through online predictive tools and functional experiments, we demonstrated that XIST and S100B were targets of miR-330-3p. XIST and miR-330-3p suppressed each other in a reciprocal way in cardiomyocytes. Additionally, XIST promoted S100B expression through harboring the complementary binding sites with miR-330-3p, eventually prevented cardiac hypertrophy. In conclusion, our findings revealed a novel molecular mechanism that XIST/miR-330-3p/S100B pathway modulates the progression of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Yuewu Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Xianxia Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China.
| | - Lei Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Weiwei Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yuansheng Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Jiaxian Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Xuezheng Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Yong Zhao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Xiaoyan Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| | - Guowei Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan Province, China
| |
Collapse
|
10
|
miR-137 mediates the functional link between c-Myc and EZH2 that regulates cisplatin resistance in ovarian cancer. Oncogene 2018; 38:564-580. [PMID: 30166592 DOI: 10.1038/s41388-018-0459-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/30/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022]
Abstract
Platinum drugs are used in first-line to treat ovarian cancer, but most of the patients eventually generate resistance after treatment with these drugs. Although both c-Myc and EZH2 have been implicated in regulating cisplatin resistance in ovarian cancer, the interplay between these two regulators is poorly understood. Using RNA sequence analysis (RNA-seq), for the first time we find that miR-137 level is extremely low in cisplatin resistant ovarian cancer cells, correlating with higher levels of c-Myc and EZH2 expression. Further analyses indicate that in resistant cells c-Myc enhances the expression of EZH2 by directly suppressing miR-137 that targets EZH2 mRNA, and increased expression of EZH2 activates cellular survival pathways, resulting in the resistance to cisplatin. Inhibition of c-Myc-miR-137-EZH2 pathway re-sensitizes resistant cells to cisplatin. Both in vivo and in vitro analyses indicate that cisplatin treatment activates c-Myc-miR-137-EZH2 pathway. Importantly, elevated c-Myc-miR-137-EZH2 pathway in resistant cells is sustained by dual oxidase maturation factor 1 (DUOXA1)-mediated production of reactive oxygen species (ROS). Significantly, clinical studies further confirm the activated c-Myc-miR-137-EZH2 pathway in platinum drug-resistant or recurrent ovarian cancer patients. Thus, our studies elucidate a novel role of miR-137 in regulating c-Myc-EZH2 axis that is crucial to the regulation of cisplatin resistance in ovarian cancer.
Collapse
|
11
|
Targeting of TRX2 by miR-330-3p in melanoma inhibits proliferation. Biomed Pharmacother 2018; 107:1020-1029. [PMID: 30257313 DOI: 10.1016/j.biopha.2018.08.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE This study is intended to identify the key gene from gene expression profile and validate its role and regulatory mechanism in melanoma. METHODS Gene expression profile of GSE3189 from GEO database was selected among which 7 are normal skin samples, 18 are benign skin lesion samples, and 45 are melanoma samples. The present study examined the 7 normal skin samples and the 45 melanoma samples. Differentially expressed genes (DEGs) between melanoma patients and health people were performed using Morpheus online tool. The 100 most differentially expressed genes (50 upregulated genes and 50 downregulated genes) were selected as hub genes. Then, expression levels and survival analysis of hub genes were conducted via GEPIA tool to choose target gene. The expression of target gene in melanoma cell lines was examined by RT-qPCR and western blotting. The biological function of target gene on cell proliferation in melanoma was measured in vitro. The predicted target of target gene was validated by dual-luciferase reporter assay and rescue experiment. The gene expression in clinical samples were determined by RT-qPCR, immunohistochemistry (IHC) and in situ hybridization (ISH). The tumor formation study was conducted in vivo. RESULTS Targeting protein for Xklp2 (TPX2) was identified as key gene in melanoma. TPX2 could promote the proliferation of melanoma cells. The dual luciferase reporter assay confirmed that miR-330-3p targets TPX2. In rescue experiment, it was proved that miR-330-3p inhibits the proliferation of melanoma cells by negatively regulating the expression of TPX2. The results in vitro were also confirmed in vivo. miR-330-3p/TPX2 pathway expressed differently between melanoma patients and health people. These differences were statistically significant (P < 0.05). CONCLUSION Inhibiting TPX2 by miR-330-3p suppresses the proliferation of melanoma cell lines. miR-330-3p/TPX2 pathway could be a potential therapeutic target in melanoma.
Collapse
|
12
|
|
13
|
Zhong R, Liang B, Xin R, Zhu X, Liu Z, Chen Q, Hou Y, Jin Z, Qi M, Ma S, Liu X. Deoxycytidine kinase participates in the regulation of radiation-induced autophagy and apoptosis in breast cancer cells. Int J Oncol 2018; 52:1000-1010. [PMID: 29393406 DOI: 10.3892/ijo.2018.4250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 11/05/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for the phosphorylation of endogenous deoxynucleosides and for the anti‑tumor activity of many nucleoside analogs. dCK is activated in response to ionizing radiation (IR) and it is required for the G2/M checkpoint induced by IR. However, whether dCK plays a role in radiation-induced autophagy and apoptosis is less clear. In this study, we reported that dCK decreased IR-induced total cell death and apoptosis, and increased IR-induced autophagy in SKBR3 and MDA‑MB‑231 breast cancer cell lines. A molecular switch exists between apoptosis and autophagy. We further demonstrated that serine 74 phosphorylation was required for the regulation of autophagy. In dCK wild‑type (WT) or dCK S74E (mutant) MDA‑MB‑231 cell models, the expression levels of phospho-Akt, phospho-mammalian target of rapamycin (mTOR) and phospho-P70S6K significantly decreased following exposure to IR. Moreover, the ratio of Bcl‑2/Beclin1 (BECN1) significantly decreased in the S74E mutant cells; however, no change was observed in the ratio of Bcl‑2/BAX. Taken together, our findings indicate that phosphorylated and activated dCK inhibits IR-induced total cell death and apoptosis, and promotes IR-induced autophagy through the mTOR pathway and by inhibiting the binding of Bcl‑2 protein to BECN1.
Collapse
Affiliation(s)
- Rui Zhong
- Cancer Translational Medicine Laboratory, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Bing Liang
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Xin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuanji Zhu
- Medical Records Room, The First Hospital Affiliated to Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhuo Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiao Chen
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yufei Hou
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhao Jin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mu Qi
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
14
|
Liu J, Liu L, Chao S, Liu Y, Liu X, Zheng J, Chen J, Gong W, Teng H, Li Z, Wang P, Xue Y. The Role of miR-330-3p/PKC-α Signaling Pathway in Low-Dose Endothelial-Monocyte Activating Polypeptide-II Increasing the Permeability of Blood-Tumor Barrier. Front Cell Neurosci 2017; 11:358. [PMID: 29311822 PMCID: PMC5742213 DOI: 10.3389/fncel.2017.00358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022] Open
Abstract
This study was performed to determine whether EMAP II increases the permeability of the blood-tumor barrier (BTB) by affecting the expression of miR-330-3p as well as its possible mechanisms. We determined the over-expression of miR-330-3p in glioma microvascular endothelial cells (GECs) by Real-time PCR. Endothelial monocyte-activating polypeptide-II (EMAP-II) significantly decreased the expression of miR-330-3p in GECs. Pre-miR-330-3p markedly decreased the permeability of BTB and increased the expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5, however, anti-miR-330-3p had the opposite effects. Anti-miR-330-3p could enhance the effect of EMAP-II on increasing the permeability of BTB, however, pre-miR-330-3p partly reversed the effect of EMAP-II on that. Similarly, anti-miR-330-3p improved the effects of EMAP-II on increasing the expression levels of PKC-α and p-PKC-α in GECs and pre-miR-330-3p partly reversed the effects. MiR-330-3p could target bind to the 3′UTR of PKC-α. The results of in vivo experiments were similar to those of in vitro experiments. These suggested that EMAP-II could increase the permeability of BTB through inhibiting miR-330-3p which target negative regulation of PKC-α. Pre-miR-330-3p and PKC-α inhibitor decreased the BTB permeability and up-regulated the expression levels of ZO-1, occludin and claudin-5 while anti-miR-330-3p and PKC-α activator brought the reverse effects. Compared with EMAP-II, anti-miR-330-3p and PKC-α activator alone, the combination of the three combinations significantly increased the BTB permeability. EMAP-II combined with anti-miR-330-3p and PKCα activator could enhance the DOX’s effects on inhibiting the cell viabilities and increasing the apoptosis of U87 glioma cells. Our studies suggest that low-dose EMAP-II up-regulates the expression of PKC-α and increases the activity of PKC-α by inhibiting the expression of miR-330-3p, reduces the expression of ZO-1, occludin and claudin-5, and thereby increasing the permeability of BTB. The results can provide a new strategy for the comprehensive treatment of glioma.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Shuo Chao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Wei Gong
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Hao Teng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017; 7:255. [PMID: 29164055 PMCID: PMC5674931 DOI: 10.3389/fonc.2017.00255] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers.
Collapse
Affiliation(s)
- Martino Marco Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Zhan JW, Jiao DM, Wang Y, Song J, Wu JH, Wu LJ, Chen QY, Ma SL. Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti-lung cancer cell invasion. Thorac Cancer 2017; 8:461-470. [PMID: 28660665 PMCID: PMC5582578 DOI: 10.1111/1759-7714.12467] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background Curcumin (diferuloylmethane) has chemopreventive and therapeutic properties against many types of tumors, both in vitro and in vivo. Previous reports have shown that curcumin exhibits anti‐invasive activities, but the mechanisms remain largely unclear. Methods In this study, both microRNA (miRNA) and messenger RNA (mRNA) expression profiles were used to characterize the anti‐metastasis mechanisms of curcumin in human non‐small cell lung cancer A549 cell line. Results Microarray analysis revealed that 36 miRNAs were differentially expressed between the curcumin‐treated and control groups. miR‐330‐5p exhibited maximum upregulation, while miR‐25‐5p exhibited maximum downregulation in the curcumin treatment group. mRNA expression profiles and functional analysis indicated that 226 differentially expressed mRNAs belonged to different functional categories. Significant pathway analysis showed that mitogen‐activated protein kinase, transforming growth factor‐β, and Wnt signaling pathways were significantly downregulated. At the same time, axon guidance, glioma, and ErbB tyrosine kinase receptor signaling pathways were significantly upregulated. We constructed a miRNA gene network that contributed to the curcumin inhibition of metastasis in lung cancer cells. let‐7a‐3p, miR‐1262, miR‐499a‐5p, miR‐1276, miR‐331‐5p, and miR‐330‐5p were identified as key microRNA regulators in the network. Finally, using miR‐330‐5p as an example, we confirmed the role of miR‐330‐5p in mediating the anti‐migration effect of curcumin, suggesting the importance of miRNAs in the regulation of curcumin biological activity. Conclusion Our findings provide new insights into the anti‐metastasis mechanism of curcumin in lung cancer.
Collapse
Affiliation(s)
- Jian-Wei Zhan
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - De-Min Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Yi Wang
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Jia Song
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Jin-Hong Wu
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Li-Jun Wu
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Qing-Yong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Sheng-Lin Ma
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
17
|
miR-330-5p suppresses glioblastoma cell proliferation and invasiveness through targeting ITGA5. Biosci Rep 2017; 37:BSR20170019. [PMID: 28336765 PMCID: PMC5479020 DOI: 10.1042/bsr20170019] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
The present study intended to investigate the biological effects of miR-330-5p on glioblastoma (GBM) cell proliferation and invasiveness by targeting integrin α5 (ITGA5). The expressions of miR-330-5p and ITGA5 mRNA in GBM cell lines (U87, U251, and U373) and normal brain glial cell line (HEB) were detected using RT-qPCR. Protein expression of ITGA5 was examined using Western blot. The present study used MTT assay, colony formation assay, Transwell assay, wound healing assay, and flow cytometry analysis in order to determine the biological functions of GBM cells (including cell proliferation, invasion, migration, apoptosis, and cell cycle). The present study applied dual-luciferase reporter gene assay to identify the target relationship between miR-330-5p and ITGA5. miR-330-5p was low-expressed in GBM cell lines while ITGA5 was high-expressed compared with HEB. miR-330-5p could directly target ITGA5 as well as suppress its expression in GBM cells. Up-regulation of miR-330-5p and down-regulation of ITGA5 both have an inhibitory effect on cell proliferation, invasion, and migration. Meanwhile, they could also promote GBM cell apoptosis. miR-330-5p could suppress proliferation and invasion of GBM cells through targeting ITGA5.
Collapse
|
18
|
Garajová I, Le Large TYS, Giovannetti E, Kazemier G, Biasco G, Peters GJ. The Role of MicroRNAs in Resistance to Current Pancreatic Cancer Treatment: Translational Studies and Basic Protocols for Extraction and PCR Analysis. Methods Mol Biol 2016; 1395:163-87. [PMID: 26910074 DOI: 10.1007/978-1-4939-3347-1_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common cause of cancer death and has the worst prognosis of any major malignancy, with less than 5 % of patients alive 5-years after diagnosis. The therapeutic options for metastatic PDAC have changed in the past few years from single agent gemcitabine treatment to combination regimens. Nowadays, FOLFIRINOX or gemcitabine with nab-paclitaxel are new standard combinations in frontline metastatic setting in PDAC patients with good performance status. MicroRNAs (miRNA) are small, noncoding RNA molecules affecting important cellular processes such as inhibition of apoptosis, cell proliferation, epithelial-to-mesenchymal transition (EMT), metastases, and resistance to common cytotoxic and anti-signaling therapy in PDAC. A functional association between miRNAs and chemoresistance has been described for several common therapies. Therefore, in this review, we summarize the current knowledge on the role of miRNAs in the resistance to current anticancer treatment used for patients affected by metastatic PDAC.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Tessa Y S Le Large
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.,Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.,Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Geert Kazemier
- Department of Surgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Guido Biasco
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, CCA 1.42, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
| |
Collapse
|
19
|
Yao Y, Xue Y, Ma J, Shang C, Wang P, Liu L, Liu W, Li Z, Qu S, Li Z, Liu Y. MiR-330-mediated regulation of SH3GL2 expression enhances malignant behaviors of glioblastoma stem cells by activating ERK and PI3K/AKT signaling pathways. PLoS One 2014; 9:e95060. [PMID: 24736727 PMCID: PMC3988141 DOI: 10.1371/journal.pone.0095060] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/23/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs are currently considered as an active and rapidly evolving area for the treatment of tumors. In this study, we elucidated the biological significance of miR-330 in glioblastoma stem cells (GSCs) as well as the possible molecular mechanisms. SH3GL2 is mainly distributed in the central nervous system and considered to be a tumor suppressor in many tumors. In the present study, we identified miR-330 as a potential regulator of SH3GL2 and we found that it was to be inversely correlated with SH3GL2 expression in GSCs which were isolated from U87 cell lines. The expression of miR-330 enhanced cellular proliferation, promoted cell migration and invasion, and dampened cell apoptosis. When the GSCs were co-transfected with the plasmid containing short hairpin RNA directed against human SH3GL2 gene and miR-330 mimic, we found that miR-330 promoted the malignant behavior of GSCs by down-regulating the expression of SH3GL2. Meanwhile, the ERK and PI3K/AKT signaling pathways were significantly activated, leading to the decreased expression of apoptotic protein and increased expression of anti-apoptotic protein. Furthermore, in orthotopic mouse xenografts, the mice given stable over-expressed SH3GL2 cells co-transfected with miR-330 knockdown plasmid had the smallest tumor sizes and longest survival. In conclusion, these results suggested that miR-330 negatively regulated the expression of SH3GL2 in GSCs, which promoted the oncogenic progression of GSCs through activating ERK and PI3K/AKT signaling pathways. The elucidation of these mechanisms will provide potential therapeutic approaches for human glioblastoma.
Collapse
Affiliation(s)
- Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Chao Shang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Wenjing Liu
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning Province, People’s Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Hong L, Han Y, Yang J, Zhang H, Zhao Q, Wu K, Fan D. MicroRNAs in gastrointestinal cancer: prognostic significance and potential role in chemoresistance. Expert Opin Biol Ther 2014; 14:1103-11. [PMID: 24707835 DOI: 10.1517/14712598.2014.907787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Although chemotherapy is an important therapeutic strategy for gastrointestinal cancer, its clinical effect remains unsatisfied due to drug resistance. Drug resistance is a complex multistep process resulting from deregulated expression of many molecules, including tumor suppressor genes, oncogenes and microRNAs (miRNAs). A better understanding of drug resistance-related miRNAs may eventually lead to optimized therapeutic strategies for cancer patients. AREAS COVERED This review summarizes the recent advances of drug resistance-related miRNAs in esophageal, gastric and colorectal cancer. Furthermore, this study envisages future developments toward the clinical applications of these miRNAs to cancer therapy. EXPERT OPINION Drug resistance-related miRNAs may be potentially predicting biomarkers that help guide individualized chemotherapy. Specific miRNAs and their target genes can be used as therapeutic targets by reversing drug resistance. More investigations should be performed to promote the translational bridging of the latest research into clinical application.
Collapse
Affiliation(s)
- Liu Hong
- Fourth Military Medical University, Xijing Hospital, Xijing Hospital of Digestive Diseases, State Key Laboratory of Cancer Biology , Xi'an, 710032, Shaanxi Province , China +86 29 84773974 ; +86 29 82539041 ;
| | | | | | | | | | | | | |
Collapse
|
21
|
miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene 2013; 33:3717-29. [PMID: 23934188 DOI: 10.1038/onc.2013.330] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 12/31/2022]
Abstract
Chemotherapy is the most common treatment for cancer. However, multidrug resistance (MDR) remains a major obstacle to effective chemotherapy, limiting the efficacy of both conventional chemotherapeutic and novel biologic agents. The constitutive androstane receptor (CAR), a xenosensor, is a key regulator of MDR. It functions in xenobiotic detoxification by regulating the expression of phase I drug-metabolizing enzymes and ATP-binding cassette (ABC) transporters, whose overexpression in cancers and whose role in drug resistance make them potential therapeutic targets for reducing MDR. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes, including drug resistance. Here, we report the inversely related expression of miR-137 and CAR in parental and doxorubicin-resistant neuroblastoma cells, wherein miR-137 is downregulated in resistant cells. miR-137 overexpression resulted in downregulation of CAR protein and mRNA (via mRNA degradation); it sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis and increased G2-phase cell cycle arrest) and reduced the in vivo growth rate of neuroblastoma xenografts. We observed similar results in cellular models of hepatocellular and colon cancers, indicating that the doxorubicin-sensitizing effect of miR-137 is not tumor type-specific. Finally, we show for the first time a negative feedback loop whereby miR-137 downregulates CAR expression and CAR downregulates miR-137 expression. Hypermethylation of the miR-137 promoter and negative regulation of miR-137 by CAR contribute in part to reduced miR-137 expression and increased CAR and MDR1 expression in doxorubicin-resistant neuroblastoma cells. These findings demonstrate that miR-137 is a crucial regulator of cancer response to doxorubicin treatment, and they identify miR-137 as a highly promising target to reduce CAR-driven doxorubicin resistance.
Collapse
|
22
|
Giovannetti E, Toffalorio F, De Pas T, Peters GJ. Pharmacogenetics of conventional chemotherapy in non-small-cell lung cancer: a changing landscape? Pharmacogenomics 2013; 13:1073-86. [PMID: 22838953 DOI: 10.2217/pgs.12.91] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pharmacogenetics might be used to select patients who may benefit from specific chemotherapy that best matches the individual and tumor genetic profile, thus allowing maximum activity and minimal toxicity. Even if most studies in non-small-cell lung cancer yielded contradictory results, several potential biomarkers for sensitivity/resistance to platinum compounds, gemcitabine, taxanes and pemetrexed have been proposed. However, these markers need to be validated within larger prospective randomized trials of customized chemotherapy in homogeneous populations. Other critical points include the optimization/standardization of technical procedures, and further studies to unravel the extremely complex regulation of gene function. From this perspective, the evaluation of key factors influencing genotype-phenotype relationships, such as miRNAs, and functional studies to clarify pharmacokinetic/pharmacodynamic interactions, are fundamental for the pharmacogenetic optimization of cancer chemotherapy. Finally, limitation of the traditional pharmacogenetic approach relying only on candidate genes suspected of affecting drug response is now being overcome by the use of novel genome-wide studies.
Collapse
Affiliation(s)
- Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Yu HWH, Sze DMY, Cho WCS. MicroRNAs Involved in Anti-Tumour Immunity. Int J Mol Sci 2013; 14:5587-607. [PMID: 23478435 PMCID: PMC3634477 DOI: 10.3390/ijms14035587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/26/2012] [Accepted: 02/19/2013] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a category of small RNAs that constitute a new layer of complexity to gene regulation within the cell, which has provided new perspectives in understanding cancer biology. The deregulation of miRNAs contributes critically to the development and pathophysiology of a number of cancers. miRNAs have been found to participate in cell transformation and multiplication by acting as tumour oncogenes or suppressors; therefore, harnessing miRNAs may provide promising cancer therapeutics. Another major function of miRNAs is their activity as critical regulatory vehicles eliciting important regulatory processes in anti-tumour immunity through their influence on the development, differentiation and activation of various immune cells of both innate and adaptive immunity. This review aims to summarise recent findings focusing on the regulatory mechanisms of the development, differentiation, and proliferative aspects of the major immune populations by a diverse profile of miRNAs and may enrich our current understanding of the involvement of miRNAs in anti-tumour immunity.
Collapse
Affiliation(s)
- Hong W. H. Yu
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +852-3400-8591; Fax: +852-3904-7867
| | - Daniel M. Y. Sze
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China; E-Mail:
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Kowloon, Hong Kong, China; E-Mail: or
| |
Collapse
|
24
|
Li Y, Zhu X, Xu W, Wang D, Yan J. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochem Biophys Res Commun 2013; 431:560-5. [PMID: 23337504 DOI: 10.1016/j.bbrc.2013.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 01/04/2013] [Indexed: 12/25/2022]
Abstract
MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA-mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression.
Collapse
Affiliation(s)
- Yuefeng Li
- The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | | | | | | | | |
Collapse
|
25
|
Wang J, Cui Q. Specific Roles of MicroRNAs in Their Interactions with Environmental Factors. J Nucleic Acids 2012; 2012:978384. [PMID: 23209884 PMCID: PMC3502025 DOI: 10.1155/2012/978384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/26/2012] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression by modulating numerous target mRNAs expression at posttranscriptional level. Extensive studies have shown that miRNAs are critical in various important biological processes, including cell growth, proliferation, differentiation, development, and apoptosis. In terms of their importance, miRNA dysfunction has been associated with a broad range of diseases. Increased number of studies have shown that miRNAs can functionally interact with a wide spectrum of environmental factors (EFs) including drugs, industrial materials, virus and bacterial pathogens, cigarette smoking, alcohol, nutrition, sleep, exercise, stress, and radiation. More importantly, the interactions between miRNAs and EFs have been shown to play critical roles in determining abnormal phenotypes and diseases. In this paper, we propose an outline of the current knowledge about specific roles of miRNAs in their interactions with various EFs and analyze the literatures detailing miRNAs-EFs interactions in the context of various of diseases.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191, China ; MOE Key Lab of Cardiovascular Sciences, Peking University, Beijing 100191, China ; Institute of Systems Biomedicine, Peking University, Beijing 100191, China
| | | |
Collapse
|
26
|
Qu S, Yao Y, Shang C, Xue Y, Ma J, Li Z, Liu Y. MicroRNA-330 is an oncogenic factor in glioblastoma cells by regulating SH3GL2 gene. PLoS One 2012; 7:e46010. [PMID: 23029364 PMCID: PMC3448729 DOI: 10.1371/journal.pone.0046010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs have recently emerged as key regulators of cancers. This study was therefore conducted to investigate the role of miR-330 in biological behaviors of human glioblastoma U87 and U251 cell lines and its molecular mechanism. SH3GL2 gene was identified as the target of miR-330. MiR-330 overexpression was established by transfecting miR-330 precursor into U87 and U251 cells, and its effects on proliferation, migration, invasion, cell cycle and apoptosis were studied. Overexpression of miR-330 can enhance cellular proliferation, promote migration and invasion, activate cell cycle and also inhibit apoptosis in U87 and U251 cells. Collectively, these above-mentioned results suggest that miRNA-330 plays an oncogenic role in human glioblastoma by regulating SH3GL2 gene and might be a new therapeutic target of human glioblastoma.
Collapse
Affiliation(s)
- Shengtao Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yilong Yao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chao Shang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People’s Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People’s Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, People’s Republic of China
- Institute of Pathology and Pathophysiology, China Medical University, Shenyang, People’s Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|