1
|
Hyun YE, An S, Kim M, Park IG, Yoon S, Javaid HMA, Vu TNL, Kim G, Choi H, Lee HW, Noh M, Huh JY, Choi S, Kim HR, Jeong LS. Structure–Activity Relationships of Truncated 1′-Homologated Carbaadenosine Derivatives as New PPARγ/δ Ligands: A Study on Sugar Puckering Affecting Binding to PPARs. J Med Chem 2023; 66:4961-4978. [PMID: 36967575 DOI: 10.1021/acs.jmedchem.2c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are associated with the regulation of metabolic homeostasis. Based on a previous report that 1'-homologated 4'-thionucleoside acts as a dual PPARγ/δ modulator, carbocyclic nucleosides 2-5 with various sugar conformations were synthesized to determine whether sugar puckering affects binding to PPARs. (S)-conformer 2 was synthesized using Charette asymmetric cyclopropanation, whereas (N)-conformer 3 was synthesized using stereoselective Simmons-Smith cyclopropanation. All synthesized nucleosides did not exhibit binding affinity to PPARα but exhibited significant binding affinities to PPARγ/δ. The binding affinity of final nucleosides to PPARγ did not differ significantly based on their conformation, but their affinity to PPARδ depended greatly on their conformation, correlated with adiponectin production. (N)-conformer 3h was discovered to be the most potent PPARδ antagonist with good adiponectin production, which exhibited the most effective activity in inhibiting the mRNA levels of LPS-induced IL-1β expression in RAW 264.7 macrophages, implicating its anti-inflammatory activity.
Collapse
|
2
|
Hyun YE, Jarhad DB, Kim M, Yang A, Kim G, Kim HR, Jeong LS. Synthesis of Enantiomerically Pure Pyrimidine Ribonucleosides Locked in the South Conformation. Org Lett 2022; 24:9281-9284. [PMID: 36512445 DOI: 10.1021/acs.orglett.2c03853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The conformation of the central five-membered ring of a nucleoside plays an important role in enzyme recognition. Bicyclo[3.1.0]hexane, also known as the methanocarba (MC), serves as a template that can mimic the locked forms of the two distinctive conformations, namely, the north and south conformations. While modified nucleosides locked in the north conformation have been actively investigated, the south counterpart remains largely unexplored because it is difficult to synthesize. Herein, we report a concise synthetic route that can provide the key amino sugar intermediate essential for the synthesis of (S)-MC ribonucleosides in a 100% stereoselective manner. Also, through the proposed synthetic approach, we report the first synthesis of enantiomerically pure (S)-MC cytidine 1. We believe our findings would greatly contribute to the field of nucleoside chemistry and provide opportunities for novel nucleoside discovery.
Collapse
Affiliation(s)
- Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Ayeon Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Korea
| | - Hong-Rae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.,Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02708, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Zhu Y, Li Z, Song W, Khan MA, Li H. Conformation Locking of the Pentose Ring in Nucleotide Monophosphate Coordination Polymers via π-π Stacking and Metal-Ion Coordination. Inorg Chem 2022; 61:818-829. [PMID: 34856096 DOI: 10.1021/acs.inorgchem.1c02356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The conformation of the pentose ring in nucleotides is extremely important and a basic problem in biochemistry and pharmaceutical chemistry. In this study, we used a strategy to regulate the conformation of pentose rings of nucleotides via the synergistic effect of metal-ion coordination and π-π stacking. Seven types of coordination complexes were developed and characterized using Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, ultraviolet-visible spectroscopy, 1H nuclear magnetic resonance spectroscopy, electrospray ionization mass spectrometry, and single-crystal X-ray diffraction. On the basis of two conformational parameters obtained from single-crystal structure analysis, i.e., the pseudorotation phase angle and degree of puckering, the exact conformation of the furanose ring in these coordination polymers was unequivocally determined. Crystallographic studies demonstrate that a short bridging ligand (4,4'-bipyridine) is conducive to the formation of a twist form, and long auxiliary ligands [1,2-bis(4-pyridyl)ethene and 4,4'-azopyridine] induce the formation of an envelope conformation. However, the longest auxiliary ligands [1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene] cannot limit the flexibility of a nucleotide. Our results demonstrated that the proposed strategy is universal and controllable. Moreover, the chirality of these coordination polymers was examined by combining the explanation of their crystal structures with solid-state circular dichroism spectroscopy measurements.
Collapse
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
4
|
Jacobson KA, Salmaso V, Suresh RR, Tosh DK. Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Med Chem 2021; 12:1808-1825. [PMID: 34825182 PMCID: PMC8597424 DOI: 10.1039/d1md00167a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenosine (ribo)kinase, have been extensively studied. A general modification, i.e. a constrained, bicyclic ring system (bicyclo[3.1.0]hexane, also called methanocarba) substituted in place of a furanose ring, can increase nucleoside/nucleotide potency and/or selectivity at purinergic and antiviral targets and in interactions at diverse and unconventional targets. Compared to other common drug discovery scaffolds containing planar rings, methanocarba nucleosides display greater sp3 character (i.e. more favorable as drug-like molecules) and can manifest as sterically-constrained North (N) or South (S) conformations. Initially weak, off-target interactions of (N)-methanocarba adenosine derivatives were detected as leads that were structurally optimized to enhance activity and selectivity toward target proteins that normally do not recognize nucleosides. By this approach, novel modulators for 5HT2 serotonin and κ-opioid receptors, dopamine (DAT) and ATP-binding cassette (ABC) transporters were found, and previously undetected antiviral activities were revealed. Thus, through methanocarba nucleoside synthesis, structure-activity relationships, and multi-target pharmacology, a robust purinergic receptor scaffold has been repurposed to satisfy the pharmacophoric requirements of various GPCRs, enzymes and transporters.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| |
Collapse
|
5
|
Calabrese C, Uriarte I, Insausti A, Vallejo-López M, Basterretxea FJ, Cochrane SA, Davis BG, Corzana F, Cocinero EJ. Observation of the Unbiased Conformers of Putative DNA-Scaffold Ribosugars. ACS CENTRAL SCIENCE 2020; 6:293-303. [PMID: 32123748 PMCID: PMC7047431 DOI: 10.1021/acscentsci.9b01277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Indexed: 06/10/2023]
Abstract
The constitution, configuration, and flexibility of the core sugars of DNA molecules alter their function in diverse roles. Conformational itineraries of the ribofuranosides (fs) have long been known to finely determine rates of processing, yet we also know that, strikingly, semifunctional DNAs containing pyranosides (ps) or other configurations can be created, suggesting sufficient but incompletely understood plasticity. The multiple conformers involved in such processes are necessarily influenced by context and environment: solvent, hosts, ligands. Notably, however, to date the unbiased, "naked" conformers have not been experimentally determined. Here, the inherent conformational biases of DNA scaffold deoxyribosides in unsolvated and solvated forms have now been defined using gas-phase microwave and solution-phase NMR spectroscopies coupled with computational analyses and exploitation of critical differences between natural-abundance isotopologues. Serial determination of precise, individual spectra for conformers of these 25 isotopologues in alpha (α-d) and beta (β-d); pyrano (p) and furano (f) methyl 2-deoxy-d-ribosides gave not only unprecedented atomic-level resolution structures of associated conformers but also their quantitative populations. Together these experiments revealed that typical 2E and 3E conformations of the sugar found in complex DNA structures are not inherently populated. Moreover, while both OH-5' and OH-3' are constrained by intramolecular hydrogen bonding in the unnatural αf scaffold, OH-3' is "born free" in the "naked" lowest lying energy conformer of natural βf. Consequently, upon solvation, unnatural αf is strikingly less perturbable (retaining 2T1 conformation in vacuo and water) than natural βf. Unnatural αp and βp ribosides also display low conformational perturbability. These first experimental data on inherent, unbiased conformers therefore suggest that it is the background of conformational flexibility of βf that may have led to its emergence out of multiple possibilities as the sugar scaffold for "life's code" and suggest a mechanism by which the resulting freedom of OH-3' (and hence accessibility as a nucleophile) in βf may drive preferential processing and complex structure formation, such as replicative propagation of DNA from 5'-to-3'.
Collapse
Affiliation(s)
- Camilla Calabrese
- Departamento
de Química Física, Facultad de Ciencia y
Tecnología, Universidad del
País Vasco (UPV/EHU), Campus de Leioa, Ap. 644, 48080 Bilbao, Spain
- Instituto
Biofisika (CSIC, UPV/EHU), 48080 Bilbao, Spain
| | - Iciar Uriarte
- Departamento
de Química Física, Facultad de Ciencia y
Tecnología, Universidad del
País Vasco (UPV/EHU), Campus de Leioa, Ap. 644, 48080 Bilbao, Spain
- Instituto
Biofisika (CSIC, UPV/EHU), 48080 Bilbao, Spain
| | - Aran Insausti
- Departamento
de Química Física, Facultad de Ciencia y
Tecnología, Universidad del
País Vasco (UPV/EHU), Campus de Leioa, Ap. 644, 48080 Bilbao, Spain
- Instituto
Biofisika (CSIC, UPV/EHU), 48080 Bilbao, Spain
| | - Montserrat Vallejo-López
- Departamento
de Química Física, Facultad de Ciencia y
Tecnología, Universidad del
País Vasco (UPV/EHU), Campus de Leioa, Ap. 644, 48080 Bilbao, Spain
| | - Francisco J. Basterretxea
- Departamento
de Química Física, Facultad de Ciencia y
Tecnología, Universidad del
País Vasco (UPV/EHU), Campus de Leioa, Ap. 644, 48080 Bilbao, Spain
| | - Stephen A. Cochrane
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Benjamin G. Davis
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom
- The
Rosalind Franklin Institute, Oxfordshire, OX11 0FA, United Kingdom
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La
Rioja, 26006 Logroño, Spain
| | - Emilio J. Cocinero
- Departamento
de Química Física, Facultad de Ciencia y
Tecnología, Universidad del
País Vasco (UPV/EHU), Campus de Leioa, Ap. 644, 48080 Bilbao, Spain
- Instituto
Biofisika (CSIC, UPV/EHU), 48080 Bilbao, Spain
| |
Collapse
|
6
|
Salmaso V, Jacobson KA. Survey of ribose ring pucker of signaling nucleosides and nucleotides. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:322-341. [PMID: 31460850 PMCID: PMC7047539 DOI: 10.1080/15257770.2019.1658115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
Abstract
The ribose of protein-bound nucleosides and nucleotides displays preferred conformations (usually either North or South), which can be exploited to design enhanced analogs having chemically fixed conformations. We introduce a computational protocol for assembling data from the protein database (PDB) on the ribose and ribose-like conformation of small molecule ligands when complexed with purinergic signaling proteins (including receptors, enzymes and transporters, and related intracellular pathways). Some targets prefer exclusively North (adenosine and P2Y1 receptors, CD73, adenosine kinase ATP/ADP-binding site, adenosine deaminase), others prefer South (P2Y12 receptor, E-NTPDase2) or East (adenosine kinase substrates), while others (P2XRs) allow various conformations.
Collapse
Affiliation(s)
- Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Jacobson KA, Tosh DK, Toti KS, Ciancetta A. Polypharmacology of conformationally locked methanocarba nucleosides. Drug Discov Today 2017; 22:1782-1791. [PMID: 28781163 PMCID: PMC5705437 DOI: 10.1016/j.drudis.2017.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/13/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
Abstract
A single molecular scaffold can be adapted to interact with diverse targets, either separately or simultaneously. Nucleosides and nucleotides in which ribose is substituted with bicyclo[3.1.0]hexane are an example of a versatile drug-like scaffold for increasing selectivity at their classical targets: kinases, polymerases, adenosine and P2 receptors. Also, by applying structure-based functional group manipulations, rigidified adenosine derivatives can be repurposed to satisfy pharmacophoric requirements of various GPCRs, ion channels, enzymes and transporters, initially detected as off-target activities. Recent examples include 5HT2B serotonin receptor antagonists and novel dopamine transporter allosteric modulators. This directable target diversity establishes rigid nucleosides as privileged scaffolds.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bldg 8A, Rm B1A-19, Bethesda, MD 20892-0810, USA.
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bldg 8A, Rm B1A-19, Bethesda, MD 20892-0810, USA
| | - Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bldg 8A, Rm B1A-19, Bethesda, MD 20892-0810, USA
| | - Antonella Ciancetta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bldg 8A, Rm B1A-19, Bethesda, MD 20892-0810, USA
| |
Collapse
|
8
|
Abstract
Telbivudine (LdT) is an antiviral agent currently used in the treatment of chronic hepatitis B virus, which was first approved by the US FDA in 2006. The safety of LdT is of great importance for patients that receive long-term treatment for this condition. It has been confirmed that patients treated with LdT have significantly elevated creatine kinase levels. However, the mechanism responsible for this adverse reaction is unclear. This review summarizes the current literature of the adverse reactions of LdT and the possible mechanisms that are involved in chronic hepatitis B infection. Thus, we aim to provide guidance on best practices in using LdT and to provide evidence of the possible mechanisms of LdT-associated adverse reactions.
Collapse
Affiliation(s)
- Jianfei Long
- Department of Pharmacy, HuaShan Hospital, Fudan University, No. 12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| | - Min Wang
- College of Pharmacy, Fudan University, Shanghai, China
| | - Bicui Chen
- Department of Pharmacy, HuaShan Hospital, Fudan University, No. 12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| | - Jiming Zhang
- Department of Infectious Diseases, HuaShan Hospital, Fudan University, No.12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| | - Bin Wang
- Department of Pharmacy, HuaShan Hospital, Fudan University, No. 12 Middle Wu Lu Mu Qi Road, Shanghai 200040, China
| |
Collapse
|
9
|
Bird NTE, Elmasry M, Jones R, Psarelli E, Dodd J, Malik H, Greenhalf W, Kitteringham N, Ghaneh P, Neoptolemos JP, Palmer D. Immunohistochemical hENT1 expression as a prognostic biomarker in patients with resected pancreatic ductal adenocarcinoma undergoing adjuvant gemcitabine-based chemotherapy. Br J Surg 2017; 104:328-336. [PMID: 28199010 DOI: 10.1002/bjs.10482] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 12/08/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human equilibrative nucleoside transporters (hENTs) are transmembranous proteins that facilitate the uptake of nucleosides and nucleoside analogues, such as gemcitabine, into the cell. The abundance of hENT1 transporters in resected pancreatic ductal adenocarcinoma (PDAC) might make hENT1 a potential biomarker of response to adjuvant chemotherapy. The aim of this study was to see whether hENT1 expression, as determined by immunohistochemistry, was a suitable predictive marker for subsequent treatment with gemcitabine-based adjuvant chemotherapy. METHODS A systematic review was performed, searching databases from January 1997 to January 2016. Articles pertaining to hENT1 immunohistochemical analysis in resected PDAC specimens from patients who subsequently underwent adjuvant gemcitabine-based chemotherapy were identified. Eligible studies were required to contain survival data, reporting specifically overall survival (OS) and disease-free survival (DFS) with associated hazard ratios (HRs) stratified by hENT1 status. RESULTS Of 42 articles reviewed, eight were suitable for review, with seven selected for quantitative meta-analysis. The total number of patients included in the meta-analysis was 770 (405 hENT1-negative, 365 hENT1-positive). Immunohistochemically detected hENT1 expression was significantly associated with both prolonged DFS (HR 0·58, 95 per cent c.i. 0·42 to 0·79) and OS (HR 0·52, 0·38 to 0·72) in patients receiving adjuvant gemcitabine but not those having fluoropyrimidine-based adjuvant therapy. CONCLUSION Expression of hENT1 is a suitable prognostic biomarker in patients undergoing adjuvant gemcitabine-based chemotherapy.
Collapse
Affiliation(s)
- N T E Bird
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - M Elmasry
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - R Jones
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - E Psarelli
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - J Dodd
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - H Malik
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - W Greenhalf
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - N Kitteringham
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - P Ghaneh
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - J P Neoptolemos
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - D Palmer
- Liverpool University Pharmacology Unit, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| |
Collapse
|