1
|
Aigner GP, Nenning P, Fiechtner B, Šrut M, Höckner M. DNA Methylation and Detoxification in the Earthworm Lumbricus terrestris Exposed to Cadmium and the DNA Demethylation Agent 5-aza-2'-deoxycytidine. TOXICS 2022; 10:100. [PMID: 35202286 PMCID: PMC8879108 DOI: 10.3390/toxics10020100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Earthworms are well-established model organisms for testing the effects of heavy metal pollution. How DNA methylation affects cadmium (Cd) detoxification processes such as the expression of metallothionein 2 (MT2), however, is largely unknown. We therefore exposed Lumbricus terrestris to 200 mg concentrations of Cd and 5-aza-2'-deoxycytidine (Aza), a demethylating agent, and sampled tissue and coelomocytes, cells of the innate immune system, for 48 h. MT2 transcription significantly increased in the Cd- and Cd-Aza-treated groups. In tissue samples, a significant decrease in MT2 in the Aza-treated group was detected, showing that Aza treatment inhibits basal MT2 gene activity but has no effect on Cd-induced MT2 levels. Although Cd repressed the gene expression of DNA-(cytosine-5)-methyltransferase-1 (DNMT1), which is responsible for maintaining DNA methylation, DNMT activity was unchanged, meaning that methylation maintenance was not affected in coelomocytes. The treatment did not influence DNMT3, which mediates de novo methylation, TET gene expression, which orchestrates demethylation, and global levels of hydroxymethylcytosine (5hmC), a product of the demethylation process. Taken together, this study indicates that Aza inhibits basal gene activity, in contrast to Cd-induced MT2 gene expression, but does not affect global DNA methylation. We therefore conclude that Cd detoxification based on the induction of MT2 does not relate to DNA methylation changes.
Collapse
Affiliation(s)
| | | | | | | | - Martina Höckner
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria; (G.P.A.); (P.N.); (B.F.); (M.Š.)
| |
Collapse
|
2
|
Balboni B, El Hassouni B, Honeywell RJ, Sarkisjan D, Giovannetti E, Poore J, Heaton C, Peterson C, Benaim E, Lee YB, Kim DJ, Peters GJ. RX-3117 (fluorocyclopentenyl cytosine): a novel specific antimetabolite for selective cancer treatment. Expert Opin Investig Drugs 2019; 28:311-322. [PMID: 30879349 DOI: 10.1080/13543784.2019.1583742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION RX-3117 is an oral, small molecule cytidine analog anticancer agent with an improved pharmacological profile relative to gemcitabine and other nucleoside analogs. The agent has excellent activity against various cancer cell lines and xenografts including gemcitabine-resistant variants and it has excellent oral bioavailability; it is not a substrate for the degradation enzyme cytidine deaminase. RX-3117 is being evaluated at a daily oral schedule of 700 mg (5 days/week for 3 weeks) which results in plasma levels in the micromolar range that have been shown to be cytotoxic to cancer cells. It has shown clinical activity in refractory bladder cancer and pancreatic cancer. Areas covered: The review provides an overview of the relevant market and describes the mechanism of action, main pharmacokinetic/pharmacodynamic features and clinical development of this investigational small molecule. Expert opinion: RX-3117 is selectively activated by uridine-cytidine kinase 2 (UCK2), which is expressed only in tumors and has a dual mechanism of action: DNA damage and inhibition of DNA methyltransferase 1 (DNMT1). Because of its tumor selective activation, novel mechanism of action, excellent oral bioavailability and candidate biomarkers for patient selection, RX-3117 has the potential to replace gemcitabine in the treatment of a spectrum of cancer types.
Collapse
Affiliation(s)
- Beatrice Balboni
- a Department of Medical Oncology , Amsterdam UMC, VU University Medical Center , Amsterdam , Netherlands
| | - Btissame El Hassouni
- a Department of Medical Oncology , Amsterdam UMC, VU University Medical Center , Amsterdam , Netherlands
| | - Richard J Honeywell
- a Department of Medical Oncology , Amsterdam UMC, VU University Medical Center , Amsterdam , Netherlands
| | - Dzjemma Sarkisjan
- a Department of Medical Oncology , Amsterdam UMC, VU University Medical Center , Amsterdam , Netherlands
| | - Elisa Giovannetti
- a Department of Medical Oncology , Amsterdam UMC, VU University Medical Center , Amsterdam , Netherlands.,b Cancer Pharmacology Lab , Pisa , Italy
| | - Julie Poore
- c Rexahn Pharmaceuticals, Inc , Rockville , MD , USA
| | - Callie Heaton
- c Rexahn Pharmaceuticals, Inc , Rockville , MD , USA
| | | | - Ely Benaim
- c Rexahn Pharmaceuticals, Inc , Rockville , MD , USA
| | - Young B Lee
- c Rexahn Pharmaceuticals, Inc , Rockville , MD , USA
| | - Deog J Kim
- c Rexahn Pharmaceuticals, Inc , Rockville , MD , USA
| | - Godefridus J Peters
- a Department of Medical Oncology , Amsterdam UMC, VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
3
|
Honeywell RJ, Sarkisjan D, Kristensen MH, de Klerk DJ, Peters GJ. DNA methyltransferases expression in normal tissues and various human cancer cell lines, xenografts and tumors. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 37:696-708. [PMID: 30663502 DOI: 10.1080/15257770.2018.1498516] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation plays an important role in carcinogenesis and aberrant methylation patterns have been found in many tumors. Methylation is regulated by DNA methyltransferases (DNMT), catalyzing DNA methylation. Therefore inhibition of DNMT is an interesting target for anticancer treatment. RX-3117 (fluorocyclopentenylcytosine) is a novel demethylating antimetabolite that is currently being studied in clinical trials in metastatic bladder and pancreatic cancers. The active nucleotide of RX-3117 is incorporated into DNA leading to downregulation of DNMT1, the maintenance DNA methylation enzyme. Since DNMT1 is a major target for the activity of RX-3117, DNMT1 may be a potential predictive biomarker. Therefore, DNMT1 protein and mRNA expression was investigated in 19 cancer cell lines, 26 human xenografts (hematological, lung, pancreatic, colon, bladder cancer) and 10 colorectal cancer patients. The DNMT1 mRNA expression showed large variation between cell lines (100-fold) and the 26 xenografts (1100-fold) investigated. The DNMT1 protein was overexpressed in colon tumours from patients compared to non-malignant mucosa from the same patients (P = 0.02). The DNA methylation in these patients was significantly higher in tumour tissues compared to normal mucosa (P = 0.001). DNMT1 expression in normal white blood cells also showed a large variation. In conclusion, the large variation in DNMT1 expression may serve as a potential biomarker for demethylating therapy such as with RX-3117.
Collapse
Affiliation(s)
- Richard J Honeywell
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Dzjemma Sarkisjan
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Michael H Kristensen
- b Department of Clinical Pathology , South Naestved Hospital , Denmark, The Netherlands
| | - Daniel J de Klerk
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Godefridus J Peters
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|