1
|
Morozov VN, Klimovich MA, Shibaeva AV, Klimovich ON, Koshevaya ED, Kolyvanova MA, Kuzmin VA. Optical Polymorphism of Liquid-Crystalline Dispersions of DNA at High Concentrations of Crowding Polymer. Int J Mol Sci 2023; 24:11365. [PMID: 37511123 PMCID: PMC10379083 DOI: 10.3390/ijms241411365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Optically active liquid-crystalline dispersions (LCD) of nucleic acids, obtained by polymer- and salt-induced (psi-) condensation, e.g., by mixing of aqueous saline solutions of low molecular weight DNA (≤106 Da) and polyethylene glycol (PEG), possess an outstanding circular dichroism (CD) signal (so-called psi-CD) and are of interest for sensor applications. Typically, such CD signals are observed in PEG content from ≈12.5% to ≈22%. However, in the literature, there are very conflicting data on the existence of psi-CD in DNA LCDs at a higher content of crowding polymer up to 30-40%. In the present work, we demonstrate that, in the range of PEG content in the system above ≈24%, optically polymorphic LCDs can be formed, characterized by both negative and positive psi-CD signals, as well as by ones rather slightly differing from the spectrum of isotropic DNA solution. Such a change in the CD signal is determined by the concentration of the stock solution of PEG used for the preparation of LCDs. We assume that various saturation of polymer chains with water molecules may affect the amount of active water, which in turn leads to a change in the hydration of DNA molecules and their transition from B-form to Z-form.
Collapse
Affiliation(s)
- Vladimir N Morozov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
| | - Mikhail A Klimovich
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
- Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation, 23 Marshala Novikova, 123182 Moscow, Russia
| | - Anna V Shibaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
| | - Olga N Klimovich
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
| | - Ekaterina D Koshevaya
- Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation, 23 Marshala Novikova, 123182 Moscow, Russia
| | - Maria A Kolyvanova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
- Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation, 23 Marshala Novikova, 123182 Moscow, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, 119334 Moscow, Russia
| |
Collapse
|
2
|
Bhanjadeo MM, Nial PS, Sathyaseelan C, Singh AK, Dutta J, Rathinavelan T, Subudhi U. Biophysical interaction between lanthanum chloride and (CG) n or (GC) n repeats: A reversible B-to-Z DNA transition. Int J Biol Macromol 2022; 216:698-709. [PMID: 35809677 DOI: 10.1016/j.ijbiomac.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022]
Abstract
The transition from right-handed to left-handed DNA is not only acts as the controlling factor for switching gene expression but also has equal importance in designing nanomechanical devices. The (CG)n and (GC)n repeat sequences are well known model molecules to study B-Z transition in the presence of higher concentration of monovalent cations. In this communication, we report a cyclic transition in (CG)6 DNA using millimolar concentration of trivalent lanthanide salt LaCl3. The controlled and reversible transition was seen in (CG)12, and (GC)12 DNA employing CD spectroscopy. While LaCl3 failed to induce B-Z transition in shorter oligonucleotides such as (CG)3 and (GC)3, a smooth B-Z transition was recorded for (CG)6, (CG)12 and (GC)12 sequences. Interestingly, the phenomenon was reversible (Z-B transition) with addition of EDTA. Particularly, two rounds of cyclic transition (B-Z-B-Z-B) have been noticed in (CG)6 DNA in presence of LaCl3 and EDTA which strongly suggest that B-Z transition is reversible in short repeat sequences. Thermal melting and annealing behaviour of B-DNA are reversible while the thermal melting of LaCl3-induced Z-DNA is irreversible which suggest a stronger binding of LaCl3 to the phosphate backbone of Z-DNA. This was further supported by isothermal titration calorimetric study. Molecular dynamics (MD) simulation indicates that the mode of binding of La3+ (of LaCl3) with d(CG)8.d(CG)8 is through the minor groove, wherein, 3 out of 11 La3+ bridge the anionic oxygens of the complementary strands. Such a tight coordination of La3+ with the anionic oxygens at the minor groove surface may be the reason for the experimentally observed irreversibility of LaCl3-induced Z-DNA seen in longer DNA fragments. Thus, these results indicate LaCl3 can easily be adopted as an inducer of left-handed DNA in other short oligonucleotides sequences to facilitate the understanding of the molecular mechanism of B-Z transition.
Collapse
Affiliation(s)
- Madhabi M Bhanjadeo
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Partha S Nial
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Chakkarai Sathyaseelan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi Campus, Telangana 502285, India
| | - Ajit K Singh
- Structural Biology Laboratory, DBT-Institute of Life Sciences, Bhubaneswar 751023, India; Department of Pharmacology, University of Vermont College of Medicine, Burlington 05405, USA
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education & Research, Bhubaneswar 752050, India; Homi Bhaba National Institute, Mumbai 400094, India
| | | | - Umakanta Subudhi
- DNA Nanotechnology & Application Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Bhanjadeo MM, Baral B, Subudhi U. Sequence-specific B-to-Z transition in self-assembled DNA: A biophysical and thermodynamic study. Int J Biol Macromol 2019; 137:337-345. [DOI: 10.1016/j.ijbiomac.2019.06.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022]
|