1
|
Zhong R, Liang B, Xin R, Zhu X, Liu Z, Chen Q, Hou Y, Jin Z, Qi M, Ma S, Liu X. Deoxycytidine kinase participates in the regulation of radiation-induced autophagy and apoptosis in breast cancer cells. Int J Oncol 2018; 52:1000-1010. [PMID: 29393406 DOI: 10.3892/ijo.2018.4250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 11/05/2022] Open
Abstract
Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for the phosphorylation of endogenous deoxynucleosides and for the anti‑tumor activity of many nucleoside analogs. dCK is activated in response to ionizing radiation (IR) and it is required for the G2/M checkpoint induced by IR. However, whether dCK plays a role in radiation-induced autophagy and apoptosis is less clear. In this study, we reported that dCK decreased IR-induced total cell death and apoptosis, and increased IR-induced autophagy in SKBR3 and MDA‑MB‑231 breast cancer cell lines. A molecular switch exists between apoptosis and autophagy. We further demonstrated that serine 74 phosphorylation was required for the regulation of autophagy. In dCK wild‑type (WT) or dCK S74E (mutant) MDA‑MB‑231 cell models, the expression levels of phospho-Akt, phospho-mammalian target of rapamycin (mTOR) and phospho-P70S6K significantly decreased following exposure to IR. Moreover, the ratio of Bcl‑2/Beclin1 (BECN1) significantly decreased in the S74E mutant cells; however, no change was observed in the ratio of Bcl‑2/BAX. Taken together, our findings indicate that phosphorylated and activated dCK inhibits IR-induced total cell death and apoptosis, and promotes IR-induced autophagy through the mTOR pathway and by inhibiting the binding of Bcl‑2 protein to BECN1.
Collapse
Affiliation(s)
- Rui Zhong
- Cancer Translational Medicine Laboratory, Jilin Provincial Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Bing Liang
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Rui Xin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuanji Zhu
- Medical Records Room, The First Hospital Affiliated to Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhuo Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qiao Chen
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yufei Hou
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhao Jin
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mu Qi
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaodong Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
2
|
Beyaert M, Starczewska E, Van Den Neste E, Bontemps F. A crucial role for ATR in the regulation of deoxycytidine kinase activity. Biochem Pharmacol 2016; 100:40-50. [DOI: 10.1016/j.bcp.2015.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/20/2015] [Indexed: 11/15/2022]
|
3
|
Amsailale R, Beyaert M, Smal C, Janssens V, Van Den Neste E, Bontemps F. Protein phosphatase 2A regulates deoxycytidine kinase activityviaSer-74 dephosphorylation. FEBS Lett 2014; 588:727-32. [DOI: 10.1016/j.febslet.2014.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/10/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
4
|
Ju J, Qi Z, Cai X, Cao P, Huang Y, Wang S, Liu N, Chen Y. The apoptotic effects of toosendanin are partially mediated by activation of deoxycytidine kinase in HL-60 cells. PLoS One 2012; 7:e52536. [PMID: 23300702 PMCID: PMC3531419 DOI: 10.1371/journal.pone.0052536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/15/2012] [Indexed: 12/17/2022] Open
Abstract
Triterpenoid toosendanin (TSN) exhibits potent cytotoxic activity through inducing apoptosis in a variety of cancer cell lines. However, the target and mechanism of the apoptotic effects by TSN remain unknown. In this study, we captured a specific binding protein of TSN in HL-60 cells by serial affinity chromatography and further identified it as deoxycytidine kinase (dCK). Combination of direct activation of dCK and inhibition of TSN-induced apoptosis by a dCK inhibitor confirmed that dCK is a target for TSN partially responsible for the apoptosis in HL-60 cells. Moreover, the activation of dCK by TSN was a result of conformational change, rather than auto-phosphorylation. Our results further imply that, in addition to the dATP increase by dCK activation in tumor cells, dCK may also involve in the apoptotic regulation.
Collapse
Affiliation(s)
- Jianming Ju
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhichao Qi
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Xueting Cai
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Peng Cao
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yan Huang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Amsailale R, Van Den Neste E, Arts A, Starczewska E, Bontemps F, Smal C. Phosphorylation of deoxycytidine kinase on Ser-74: impact on kinetic properties and nucleoside analog activation in cancer cells. Biochem Pharmacol 2012; 84:43-51. [PMID: 22490700 DOI: 10.1016/j.bcp.2012.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
Deoxycytidine kinase (dCK) (EC 2.7.1.74) is a key enzyme in the activation of several therapeutic nucleoside analogs (NA). Its activity can be increased in vivo by Ser-74 phosphorylation, a property that could be used for enhancing NA activation and clinical efficacy. In line with this, studies with recombinant dCK showed that mimicking Ser-74 phosphorylation by a S74E mutation increases its activity toward pyrimidine analogs. However, purine analogs had not been investigated. Here, we show that the S74E mutation increased the k(cat) for cladribine (CdA) by 8- or 3-fold, depending on whether the phosphoryl donor was ATP or UTP, for clofarabine (CAFdA) by about 2-fold with both ATP and UTP, and for fludarabine (F-Ara-A) by 2-fold, but only with UTP. However, the catalytic efficiencies (k(cat)/Km) were not, or slightly, increased. The S74E mutation also sensitized dCK to feed-back inhibition by dCTP, regardless of the phosphoryl donor. Importantly, we did not observe an increase of endogenous dCK activity toward purine analogs after in vivo-induced increase of Ser-74 phosphorylation. Accordingly, treatment of CLL cells with aphidicolin, which enhances dCK activity through Ser-74 phosphorylation, did not modify the conversion of CdA or F-Ara-A into their active triphosphate form. Nevertheless, the same treatment enhanced activation of gemcitabine (dFdC) into dFdCTP in CLL as well as in HCT-116 cells and produced synergistic cytotoxicity. We conclude that increasing phosphorylation of dCK on Ser-74 might constitute a valuable strategy to enhance the clinical efficacy of some NA, like dFdC, but not of CdA or F-Ara-A.
Collapse
Affiliation(s)
- Rachid Amsailale
- Laboratory of Physiological Chemistry, de Duve Institute & Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
6
|
Casein kinase 1delta activates human recombinant deoxycytidine kinase by Ser-74 phosphorylation, but is not involved in the in vivo regulation of its activity. Arch Biochem Biophys 2010; 502:44-52. [PMID: 20637175 DOI: 10.1016/j.abb.2010.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/09/2010] [Accepted: 07/11/2010] [Indexed: 11/20/2022]
Abstract
Deoxycytidine kinase (dCK) is a key enzyme in the salvage of deoxynucleosides and in the activation of several anticancer and antiviral nucleoside analogues. We recently showed that dCK was activated in vivo by phosphorylation of Ser-74. However, the protein kinase responsible was not identified. Ser-74 is located downstream a Glu-rich region, presenting similarity with the consensus phosphorylation motif of casein kinase 1 (CKI), and particularly of CKI delta. We showed that recombinant CKI delta phosphorylated several residues of bacterially overexpressed dCK: Ser-74, but also Ser-11, Ser-15, and Thr-72. Phosphorylation of dCK by CKI delta correlated with increased activity reaching at least 4-fold. Site-directed mutagenesis demonstrated that only Ser-74 phosphorylation was involved in dCK activation by CKI delta, strengthening the key role of this residue in the control of dCK activity. However, neither CKI delta inhibitors nor CKI delta siRNA-mediated knock-down modified Ser-74 phosphorylation or dCK activity in cultured cells. Moreover, these approaches did not prevent dCK activation induced by treatments enhancing Ser-74 phosphorylation. Taken together, the data preclude a role of CKI delta in the regulation of dCK activity in vivo. Nevertheless, phosphorylation of dCK by CKI delta could be a useful tool for elucidating the influence of Ser-74 phosphorylation on the structure-activity relationships in the enzyme.
Collapse
|