1
|
Hou X, Li R, Wang J, Wei D, Yang X, Liao W, Yuchi Y, Liu X, Huo W, Mao Z, Liu J, Wang C, Hou J. Gender-specific associations between mixture of polycyclic aromatic hydrocarbons and telomere length. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9583-9598. [PMID: 37773482 DOI: 10.1007/s10653-023-01752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Evidence shows the relationships of individual environmental PAHs by their urinary metabolites with relative telomere length (RTL), which may be affected by biological gender differences. Since plasma parent PAHs are not metabolized, it may reflect human exposure to PAHs more realistically in daily life. Thus, exploring joint associations between plasma parent PAHs and RTL is urgent, which may identify the major contributor to its adverse effect. In this study, 2577 participants were obtained from the Henan Rural Cohort. The level of PAHs in blood samples was detected by gas chromatography coupled with tandem mass spectrometry. RTL in blood samples was detected by quantitative polymerase chain reaction. Generalized linear models or quantile g-computation were performed to evaluate the associations between the individual or a mixture of PAHs and RTL. Results from generalized linear models showed that each unit increment in BghiP value corresponded to a 0.098 (95%CI: 0.067, 0.129) increment in RTL for men; each unit increment in BaP, BghiP and Flu value corresponded to a 0.041 (95%CI: 0.014, 0.068), 0.081 (95%CI: 0.055, 0.107) and 0.016 (95%CI: 0.005, 0.027) increment in RTL for women. Results from quantile-g computation revealed that each one-quantile increment in the mixture of 10 PAHs corresponded to a 0.057 (95%CI: 0.021, 0.094) and 0.047 (95%CI: 0.003, 0.091) increment in RTL values of women and men, but these associations were mainly ascribed to three PAHs for women (BaP, Flu and BghiP) and men (BaP, BghiP and Pyr), respectively. Similar results were found in smoking men and cooking women without smoking. Our study found that exposure to 10 PAHs mixture was positively associated with RTL across gender, mainly attributed to Flu, BaP and BghiP, implicating that gender-specific associations may be ascribed to tobacco and cooking smoke pollution. The findings provided clues for effective measures to control PAHs pollutants-related aging disease.Clinical trial registration The Henan Rural Cohort Study has been registered at the Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375 .
Collapse
Affiliation(s)
- Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaohuan Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Junlin Liu
- Wuhan Center for Disease Control and Prevention, Wuhan, Hubei, People's Republic of China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Liu A, Zhao Y, Mu X, Huang T, Gao H, Ma J. The levels of polycyclic aromatic hydrocarbons (PAHs) in human milk and exposure risk to breastfed infants in petrochemical industrialized Lanzhou Valley, Northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16754-16766. [PMID: 29611127 DOI: 10.1007/s11356-018-1799-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
We investigated in this paper the presence of PAHs in human milk from lactating women residing in Lanzhou, a petrochemical industrialized valley city in Northwest China. The PAH concentration levels in human milk samples from 98 healthy women were determined by gas chromatography/mass spectrometry (GC/MS). The associations between the lifestyle factors and the PAHs levels of human milk were analyzed. Moreover, we applied principal component analysis (PCA) method to gain a better insight into the similarities or dissimilarities of the human milk PAH loads and different pathways of source exposure. In addition, the exposure risks of breastfed infants due to PAH ingestion via breast milk were assessed and the relative breast-feeding risk to the total intake dose of infants was addressed. The results showed that the average fat-normalized human milk ∑15PAHs concentrations for the lactating women residing in four districts of Lanzhou, namely, Xigu, Anning, Qilihe, and Chengguan were 320.40, 270.36, 374.04, and 259.84 ng/g of fat, respectively. The ∑15PAHs of human milk from the lactating women of Qilihe District exhibited the highest concentration level, while the concentration level for women from Xigu District is the second highest for the observed human milk ∑15PAHs. And the corresponding BaPeq concentrations for women in Xigu, Anning, Qilihe, and Chengguan districts were 58.29, 47.95, 65.13, and 45.60 ng/g of fat, respectively. A significant correlation was only found between human milk and living district environment (p < 0.05). Although the Spearman correlation analysis showed that there were no significant correlation existing between other lifestyle and human milk PAHs, we confirmed that consuming barbecue food could elevate PAHs levels in human milk: the barbecue intake frequency caused 10% fluctuation of ∑15PAHs concentration between high frequency and low frequency group in our study. Furthermore, the exposure to second-hand smoke can also increase the ∑15PAHs levels in human milk by 4 to 11% here. Ingestion doses of PAHs by infants (19.37-77.75 ng kg-1 day-1) were much higher than the inhalation doses (2.83-16.48 ng kg-1 day-1), which indicated that the ingestion is the main exposure risk pathway for infants. Since there are limited guidelines and standards for PAHs ingestion dose in human milk by infant, we compared the ingestion dose of BaP with the upper bound estimates of BaP dietary exposure of 108 ng kg-1 day-1 for toddlers of ages between 1.5 and 2.5 years of age in the UK reported by Committee on Toxicity of Chemicals in Food (COT) and the data we obtained were lower than this upper bound. However, the estimated margin of exposure (MOE) values of BaP-MOE, PAH2-MOE, PAH4-MOE, and PAH8-MOE were smaller than 10,000 which indicated that there are potential hazard for breastfed infants consuming these human milk samples.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Aiping Liu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Yuan Zhao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xi Mu
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tao Huang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hong Gao
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jianmin Ma
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Bioanalytical challenge: A review of environmental and pharmaceuticals contaminants in human milk. J Pharm Biomed Anal 2016; 130:318-325. [PMID: 27372148 DOI: 10.1016/j.jpba.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 12/31/2022]
Abstract
An overview of bioanalytical methods for the determination of environmental and pharmaceutical contaminants in human milk is presented. The exposure of children to these contaminants through lactation has been widely investigated. The human milk contains diverse proteins, lipids, and carbohydrates and the concentration of these components is drastically altered during the lactation period providing a high degree of an analytical challenge. Sample collection and pretreatment are still considered the Achilles' heel. This review presents liquid chromatographic methods developed in the last 10 years for this complex matrix with focuses in the extraction and quantification steps. Green sample preparation protocols have been emphasized.
Collapse
|
4
|
Caserta D, Mantovani A, Marci R, Fazi A, Ciardo F, La Rocca C, Maranghi F, Moscarini M. Environment and women's reproductive health. Hum Reprod Update 2011; 17:418-33. [DOI: 10.1093/humupd/dmq061] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Wang RY, Jain RB, Wolkin AF, Rubin CH, Needham LL. Serum concentrations of selected persistent organic pollutants in a sample of pregnant females and changes in their concentrations during gestation. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1244-9. [PMID: 19672404 PMCID: PMC2721868 DOI: 10.1289/ehp.0800105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 03/11/2009] [Indexed: 05/17/2023]
Abstract
OBJECTIVES In this study we evaluated the concentrations of selected persistent organic pollutants in a sample of first-time pregnant females residing in the United States and assessed differences in these concentrations in all pregnant females during gestation. METHODS We reviewed demographic and laboratory data for pregnant females participating in the National Health and Nutrition Examination Survey, including concentrations of 25 polychlorinated biphenyls (PCBs), 6 polychlorinated dibenzo-p-dioxins (PCDDs), 9 polychlorinated dibenzofurans (PCDFs), and 9 organochlorine pesticides. We report serum concentrations for first-time pregnant females (2001-2002; n = 49) and evaluate these concentrations in all pregnant females by trimester (1999-2002; n = 203) using a cross-sectional analysis. RESULTS The chemicals with >or= 60% detection included PCBs (congeners 126, 138/158, 153, 180), PCDDs/PCDFs [1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (1234678HpCDD), 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (123678HxCDD), 1,2,3,4,6,7,8-heptachlorodibenzofuran (1234678HpCDF), 1,1'-(2,2-dichloroethenylidene)-bis(4-chlorobenzene) (p,p'-DDE)], and trans-nonachlor. The geometric mean concentration (95% confidence intervals) for 1234678HpCDD was 15.9 pg/g lipid (5.0-50.6 pg/g); for 123678HxCDD, 9.7 pg/g (5.5-17.1 pg/g); and for 1234678HpCDF, 5.4 pg/g (3.3-8.7 pg/g). The differences in concentrations of these chemicals by trimester were better accounted for with the use of lipid-adjusted units than with whole-weight units; however, the increase in the third-trimester concentration was greater for PCDDs/PCDFs (123678HxCDD, 1234678HpCDF) than for the highest concentration of indicator PCBs (138/158, 153, 180), even after adjusting for potential confounders. CONCLUSION The concentrations of these persistent organic pollutants in a sample of first-time pregnant females living in the United States suggest a decline in exposures to these chemicals since their ban or restricted use and emission. The redistribution of body burden for these and other persistent organic pollutants during pregnancy needs to be more carefully defined to improve the assessment of fetal exposure to them based on maternal serum concentrations. Additional studies are needed to further the understanding of the potential health consequences to the fetus from persistent organic pollutants.
Collapse
Affiliation(s)
- Richard Y Wang
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | | | | | | | | |
Collapse
|
6
|
Wang RY, Needham LL. Environmental chemicals: from the environment to food, to breast milk, to the infant. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10:597-609. [PMID: 18049925 DOI: 10.1080/10937400701389891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Food is a source of exposure to many environmental chemicals found in human milk and other biological specimens. Ingestion of foods containing high amounts of animal fat is the main route of human exposure to lipophilic chemicals, such as persistent organic pollutants, which tend to bioaccumulate in the lipid compartment. Bioaccumulation results in increased exposure of these chemicals for humans, but particularly to breastfeeding infants, who are at the top of the food chain. The extent to which food contributes to a person's overall exposure depends on individual dietary habits and the concentrations of chemical residues in the food. These, in turn, are affected by (1) application methods, (2) properties and amounts of the chemical, and (3) preparation, handling, and the properties of the food. Once the food is ingested by the lactating woman, the chemical's pharmacokinetics and the transport mechanisms producing the movement of solutes across mammary alveolar cells determine the passage of chemicals from the blood to the milk. Thus, several factors affect the presence in human milk of environmental chemicals from dietary sources.
Collapse
Affiliation(s)
- R Y Wang
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | | |
Collapse
|