1
|
Zhang M, Luo L, Dai X, He Y, Ma J. Determination of oleandrin and adynerin in rat plasma by UPLC–MS/MS and their pharmacokinetic study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
2
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Kharchoufa L, Merrouni IA, Yamani A, Elachouri M. Profile on medicinal plants used by the people of North Eastern Morocco: Toxicity concerns. Toxicon 2018; 154:90-113. [PMID: 30243516 DOI: 10.1016/j.toxicon.2018.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 11/28/2022]
Abstract
In the North Eastern region of Morocco, many people are interested in medicinal plants and their uses. However, the rationale for the utilization of medicinal plants has remained largely underestimated with little or no scientific data on plant safety. In this paper we attempt to describe and establish a detailed list of current knowledge in relation to the toxicity of these plants and to evaluate the scientific data concerning the harmful effects of the selected natural products. Our approach consists of collecting published data from literature in specialized journals, books and website related to the toxic plants. This research revealed that 89 plant species, retrieved from 287 plants used as medicine in the North-Eastern region of Morocco, are considered toxic or present some kind of toxicity. Our data determines 55 compounds isolated from the plants which are dominated by five groups of toxic compounds: alkaloids followed by glucosides, terpenoids, protides and phenolics. The present work discusses toxicity-related issues arising from the use of medicinal plants by local people. We conclude that the database considered in this study could serve as an important source of information on the toxicity of medicinal plants used by this society.
Collapse
Affiliation(s)
- Loubna Kharchoufa
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Ilyass Alami Merrouni
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Amal Yamani
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| | - Mostafa Elachouri
- Laboratoire de Physiologie, Génétique et Ethnopharmacologie URAC-40, Département de Biologie, Faculté des Sciences, Université Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
4
|
The Glycoside Oleandrin Reduces Glioma Growth with Direct and Indirect Effects on Tumor Cells. J Neurosci 2017; 37:3926-3939. [PMID: 28292827 DOI: 10.1523/jneurosci.2296-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022] Open
Abstract
Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na+/K+-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To this aim, mice were transplanted with human or murine glioma and analyzed for tumor progression upon oleandrin treatment. In both systems, oleandrin impaired glioma development, reduced tumor size, and inhibited cell proliferation. We demonstrated that oleandrin does the following: (1) enhances the brain-derived neurotrophic factor (BDNF) level in the brain; (2) reduces both microglia/macrophage infiltration and CD68 immunoreactivity in the tumor mass; (3) decreases astrogliosis in peritumoral area; and (4) reduces glioma cell infiltration in healthy parenchyma. In BDNF-deficient mice (bdnftm1Jae/J) and in glioma cells silenced for TrkB receptor expression, oleandrin was not effective, indicating a crucial role for BDNF in oleandrin's protective and antitumor functions. In addition, we found that oleandrin increases survival of temozolomide-treated mice. These results encourage the development of oleandrin as possible coadjuvant agent in clinical trials of glioma treatment.SIGNIFICANCE STATEMENT In this work, we paved the road for a new therapeutic approach for the treatment of brain tumors, demonstrating the potential of using the cardioactive glycoside oleandrin as a coadjuvant drug to standard chemotherapeutics such as temozolomide. In murine models of glioma, we demonstrated that oleandrin significantly increased mouse survival and reduced tumor growth both directly on tumor cells and indirectly by promoting an antitumor brain microenvironment with a key protective role played by the neurotrophin brain-derived neurotrophic factor.
Collapse
|
5
|
Ahmed OM, Fahim HI, Boules MW, Ahmed HY. Cardiac and testicular toxicity effects of the latex and ethanolic leaf extract of Calotropis procera on male albino rats in comparison to abamectin. SPRINGERPLUS 2016; 5:1644. [PMID: 27722062 PMCID: PMC5033794 DOI: 10.1186/s40064-016-3326-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/15/2016] [Indexed: 11/11/2022]
Abstract
The present study aims to assess the toxic effect of latex and ethanolic leaf extract of Calotropis procera (C. procera), in comparison to abamectin, on serum biomarkers of function and histological integrity of heart and testis in male albino rats. To achieve this aim, the albino rats were separately administered 1/20 and 1/10 of LD50 of C. procera latex, ethanolic C. procera leaf extract and abamectin respectively by oral gavage for 4 and 8 weeks. C. procera latex and leaf extract as well as abamectin markedly elevated the activities of serum CK-MB, AST and LDH at the two tested periods in a dose dependent manner. Lipid peroxidation was significantly increased while GSH level and GPx, GST and SOD activities were significantly depleted in heart and testis of all treated rats. All treatments also induced a marked increase in serum TNF-α and decrease in serum IL-4, testosterone, FSH and LH levels in a dose dependent manner. The latex seemed to be more effective in deteriorating the testicular function and sex hormones’ levels while the ethanolic leaf extract produced more deleterious effects on oxidative stress and antioxidant defense system in both heart and testis. The normal histological architecture and integrity of the heart and testis were perturbed after treatments and the severity of lesions, which include odema, inflammatory cell infiltration, necrosis and degeneration, is dose and time dependent. In conclusion, the findings of this study indicated that C. procera latex and ethanolic extract of leaves could induce marked toxicity in heart and testis and these toxic effects may be more or less similar to those of abamectin. The cardiotoxicity and testicular toxicity may be mediated via stimulation of inflammation, increased oxidative stress and suppression of antioxidant defense system.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Hanaa I Fahim
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Magdy W Boules
- Rodents Division, Harmful Animals Department, Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| | - Heba Y Ahmed
- Rodents Division, Harmful Animals Department, Plant Protection Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
6
|
Renier AC, Kass PH, Magdesian KG, Madigan JE, Aleman M, Pusterla N. Oleander toxicosis in equids: 30 cases (1995-2010). J Am Vet Med Assoc 2013; 242:540-9. [PMID: 23363288 DOI: 10.2460/javma.242.4.540] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine clinical, laboratory analysis, and necropsy findings for equids with oleander toxicosis and to identify factors associated with outcome. DESIGN Retrospective case series. ANIMALS 30 equids. PROCEDURES Medical records of equids with detectable concentrations of oleandrin in serum, plasma, urine, or gastrointestinal fluid samples and equids that had not received cardiac glycoside drugs but had detectable concentrations of digoxin in serum were identified via a medical records database search. Descriptive statistics were calculated for medical history, physical examination, laboratory analysis, and necropsy variables. Logistic regression analysis was used to identify physical examination and laboratory analysis factors significantly associated with outcome. RESULTS 3 of 30 (10.0%) equids died before or immediately after arrival at the hospital. Of the other 27 equids, 23 (85.2%) had gastrointestinal tract abnormalities, azotemia was detected for 19 (70.4%), and a cardiac arrhythmia was ausculted for 18 (66.7%). Mortality rate for all equids was 50.0%; mortality rate for hospitalized equids was 44.4%. The most common cause of death was cardiac dysfunction. Odds of survival to discharge from the hospital were lower for equids with cardiac arrhythmias versus those without arrhythmias and decreased with increasing Hct and serum glucose concentrations. Odds of survival increased with increasing serum chloride concentration and duration of hospitalization. CONCLUSIONS AND CLINICAL RELEVANCE Equids with oleander toxicosis frequently had simultaneous gastrointestinal tract, cardiac, and renal problems. Oleander intoxication should be a differential diagnosis for equids with colic in geographic areas where oleander is found, especially when azotemia or cardiac arrhythmias are detected concurrently.
Collapse
Affiliation(s)
- Anna C Renier
- William R. Pritchard Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Oubaassine R, Weckering M, Kessler L, Breidert M, Roegel J, Eftekhari P. Insulin interacts directly with Na+/K+ATPase and protects from digoxin toxicity. Toxicology 2012; 299:1-9. [DOI: 10.1016/j.tox.2012.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 01/09/2023]
|
8
|
Pasquié JL, Thireau J, Davy JM, Le Guennec JY, Richard S. Médicaments anti-arythmiques : Présent et futur. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2011. [DOI: 10.1016/s1878-6480(11)70394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Thireau J, Pasquié JL, Martel E, Le Guennec JY, Richard S. New drugs vs. old concepts: a fresh look at antiarrhythmics. Pharmacol Ther 2011; 132:125-45. [PMID: 21420430 DOI: 10.1016/j.pharmthera.2011.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/01/2011] [Indexed: 01/10/2023]
Abstract
Common arrhythmias, particularly atrial fibrillation (AF) and ventricular tachycardia/fibrillation (VT/VF) are a major public health concern. Classic antiarrhythmic (AA) drugs for AF are of limited effectiveness, and pose the risk of life-threatening VT/VF. For VT/VF, implantable cardiac defibrillators appear to be the unique, yet unsatisfactory, solution. Very few AA drugs have been successful in the last few decades, due to safety concerns or limited benefits in comparison to existing therapy. The Vaughan-Williams classification (one drug for one molecular target) appears too restrictive in light of current knowledge of molecular and cellular mechanisms. New AA drugs such as atrial-specific and/or multichannel blockers, upstream therapy and anti-remodeling drugs, are emerging. We focus on the cellular mechanisms related to abnormal Na⁺ and Ca²⁺ handling in AF, heart failure, and inherited arrhythmias, and on novel strategies aimed at normalizing ionic homeostasis. Drugs that prevent excessive Na⁺ entry (ranolazine) and aberrant diastolic Ca²⁺ release via the ryanodine receptor RyR2 (rycals, dantrolene, and flecainide) exhibit very interesting antiarrhythmic properties. These drugs act by normalizing, rather than blocking, channel activity. Ranolazine preferentially blocks abnormal persistent (vs. normal peak) Na⁺ currents, with minimal effects on normal channel function (cell excitability, and conduction). A similar "normalization" concept also applies to RyR2 stabilizers, which only prevent aberrant opening and diastolic Ca²⁺ leakage in diseased tissues, with no effect on normal function during systole. The different mechanisms of action of AA drugs may increase the therapeutic options available for the safe treatment of arrhythmias in a wide variety of pathophysiological situations.
Collapse
Affiliation(s)
- Jérôme Thireau
- Inserm U1046 Physiologie & Médecine Expérimentale du Cœur et des Muscles, Université Montpellier-1, Université Montpellier-2, 34295 Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
10
|
Les effets pro-arythmiques des médicaments. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2010. [DOI: 10.1016/s1878-6480(10)70373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Simões-Wüst AP, Grãos M, Duarte CB, Brenneisen R, Hamburger M, Mennet M, Ramos MH, Schnelle M, Wächter R, Worel AM, von Mandach U. Juice of Bryophyllum pinnatum (Lam.) inhibits oxytocin-induced increase of the intracellular calcium concentration in human myometrial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:980-986. [PMID: 20381326 DOI: 10.1016/j.phymed.2010.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The use of preparations from Bryophyllum pinnatum in tocolysis is supported by both clinical (retrospective comparative studies) and experimental (using uterus strips) evidence. We studied here the effect of B. pinnatum juice on the response of cultured human myometrial cells to stimulation by oxytocin, a hormone known to be involved in the control of uterine contractions by increasing the intracellular free calcium concentration ([Ca2+]i). In this work, [Ca2+]i was measured online during stimulation of human myometrial cells (hTERT-C3 and M11) with oxytocin, which had been pre-incubated in the absence or in the presence of B. pinnatum juice. Since no functional voltage-gated Ca2+ channels could be detected in these myometrial cells, the effect of B. pinnatum juice was as well studied in SH-SY5Y neuroblastoma cells, which are known to have such channels and can be depolarised with KCl. B. pinnatum juice prevented the oxytocin-induced increase in [Ca2+]i in hTERT-C3 human myometrial cells in a dose-dependent manner, achieving a ca. 80% inhibition at a 2% concentration. Comparable results were obtained with M11 human primary myometrial cells. In hTERT-C3 cells, prevention of the oxytocin-induced increase in [Ca2+]i was independent of the extracellular Ca2+ concentration and of voltage-dependent Ca2+-channels. B. pinnatum juice delayed, but did not prevent the depolarization-induced increase in [Ca2+]i in SH-SY5Y cells. Taken together, the data suggest a specific and concentration-dependent effect of B. pinnatum juice on the oxytocin signalling pathway, which seems to corroborate its use in tocolysis. Such a specific mechanism would explain the rare and minor side-effects in tocolysis with B. pinnatum as well as its high therapeutic index.
Collapse
Affiliation(s)
- A P Simões-Wüst
- Research Department, Paracelsus Hospital, Richterswil, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Stephen MJ, Poindexter BJ, Moolman JA, Sheikh-Hamad D, Bick RJ. Do binucleate cardiomyocytes have a role in myocardial repair? Insights using isolated rodent myocytes and cell culture. Open Cardiovasc Med J 2009; 3:1-7. [PMID: 19430572 PMCID: PMC2678822 DOI: 10.2174/1874192400903010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 11/22/2022] Open
Abstract
Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape. Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made. All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a ‘dormant’ or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle. Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183).
Collapse
Affiliation(s)
- Michael J Stephen
- Department of Pathology, University of Texas Medical School at Houston, Texas, USA
| | | | | | | | | |
Collapse
|
13
|
Pasquié JL, Richard S. Prolongation in QT interval is not predictive of Ca2+-dependent arrhythmias: implications for drug safety. Expert Opin Drug Saf 2009; 8:57-72. [DOI: 10.1517/14740330802655454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Rodriguez ME, Poindexter BJ, Bick RJ, Dasgupta A. A Comparison of the Effects of Commercially Available Hawthorn Preparations on Calcium Transients of Isolated Cardiomyocytes. J Med Food 2008; 11:680-6. [DOI: 10.1089/jmf.2008.0080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michelle E. Rodriguez
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas
| | - Brian J. Poindexter
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas
| | - Roger J. Bick
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas
| | - Amitava Dasgupta
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|