1
|
Ai W, Huo Y, Liu X, Liu F, Zhou X, Miao Y, Jiang H, Zhang L, Shen L, Piao J, Li B. Relative sensitivities of TDAR, cytokine production, and immunophenotyping assays in immunotoxicity assessment. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00015c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2
|
Breglia R, Bui Q, Burnett D, Koschier F, Lapadula E, Podhasky P, Schreiner C, White R. A 13-Week Dermal Repeat-Dose Neurotoxicity Study of Hydrodesulfurized Kerosene in Rats. Int J Toxicol 2013; 33:68S-77S. [DOI: 10.1177/1091581813514282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A 13-week dermal repeat-dose toxicity study was conducted with hydrodesulfurized (HDS) kerosene, a test material that also met the commercial specifications for aviation turbine fuel (jet A). The objectives were to assess the potential for target organ toxicity and neurotoxicity. The HDS kerosene was applied to the shaved backs of Sprague-Dawley CD rats, 12/sex/group, 6 h/d, 5 d/wk in doses of 0 (vehicle control), 165 mg/kg (20% HDS kerosene), 330 mg/kg (40% HDS kerosene), or 495 mg/kg (60% HDS kerosene). Additional rats (12/sex) from the control and the high-dose groups were held without treatment for 4 weeks to assess recovery. Standard parameters of toxicity were investigated during the in-life phase. At necropsy, organs were weighed and selected tissues were processed for microscopic evaluation. Neurobehavioral evaluations included tests of motor activity and functional observations that were conducted pretest, at intervals during the exposure period and after recovery. No test substance-related effects on mortality, clinical observations (except dermal irritation), body weight, or clinical chemistry values were observed. A dose-related increase in skin irritation, confirmed histologically as minimal, was evident at the dosing site. The only statistically significant change considered potentially treatment related was an increase in the neutrophil count in females at 13 weeks. No test article-related effects were observed in the neurobehavioral assessments or gross or microscopic findings in the peripheral or central nervous system tissues in any of the dose groups. Excluding skin irritation, the no observed adverse effect level value for all effects was considered 495 mg/kg/d.
Collapse
Affiliation(s)
| | - Quang Bui
- Petroleum Product Stewardship Council, Washington, DC, USA
| | - Donald Burnett
- Petroleum Product Stewardship Council, Washington, DC, USA
| | | | | | - Paula Podhasky
- Petroleum Product Stewardship Council, Washington, DC, USA
| | | | - Russell White
- Petroleum Product Stewardship Council, Washington, DC, USA
| |
Collapse
|
3
|
Marty MS, Neal BH, Zablotny CL, Yano BL, Andrus AK, Woolhiser MR, Boverhof DR, Saghir SA, Perala AW, Passage JK, Lawson MA, Bus JS, Lamb JC, Hammond L. An F1-extended one-generation reproductive toxicity study in Crl:CD(SD) rats with 2,4-dichlorophenoxyacetic acid. Toxicol Sci 2013; 136:527-47. [PMID: 24072463 PMCID: PMC3858197 DOI: 10.1093/toxsci/kft213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) was assessed for systemic toxicity, reproductive toxicity, developmental neurotoxicity (DNT), developmental immunotoxicity (DIT), and endocrine toxicity. CD rats (27/sex/dose) were exposed to 0, 100, 300, 600 (female), or 800 (male) ppm 2,4-D in diet. Nonlinear toxicokinetic behavior was shown at high doses; the renal clearance saturation threshold for 2,4-D was exceeded markedly in females and slightly exceeded in males. Exposure was 4 weeks premating, 7 weeks postmating for P1 males and through lactation for P1 females. F1 offspring were examined for survival and development, and at weaning, pups were divided in cohorts, by sex and dose, and by systemic toxicity (10), DNT (10), DIT (20), and reproductive toxicity (≥ 23). Remaining weanlings were evaluated for systemic toxicity and neuropathology (10–12). Body weight decreased during lactation in high-dose P1 females and in F1 pups. Kidney was the primary target organ, with slight degeneration of proximal convoluted tubules observed in high-dose P1 males and in high-dose F1 males and females. A slight intergenerational difference in kidney toxicity was attributed to increased intake of 2,4-D in F1 offspring. Decreased weanling testes weights and delayed preputial separation in F1 males were attributed to decreased body weights. Endocrine-related effects were limited to slight thyroid hormone changes and adaptive histopathology in high-dose GD 17 dams seen only at a nonlinear toxicokinetic dose. 2,4-D did not cause reproductive toxicity, DNT, or DIT. The “No Observed Adverse Effect Level” for systemic toxicity was 300 ppm in both males (16.6mg/kg/day) and females (20.6mg/kg/day), which is approximately 6700- to 93 000-fold higher than that reported for 2,4-D exposures in human biomonitoring studies.
Collapse
Affiliation(s)
- Mary Sue Marty
- * Toxicology and Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Sweeney LM, Prues SL, Reboulet JE. Subacute effects of inhaled Jet Fuel-A (Jet A) on airway and immune function in female rats. Inhal Toxicol 2013; 25:257-71. [DOI: 10.3109/08958378.2013.780191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
White KL, DeLorme MP, Beatty PW, Smith MJ, Peachee VL. Jet fuel kerosene is not immunosuppressive in mice or rats following inhalation for 28 days. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:778-97. [PMID: 24028664 PMCID: PMC3805448 DOI: 10.1080/15287394.2013.819307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (GLP) regulations, to evaluate the effects of jet fuel kerosene on the immune system, in conjunction with an accurate, quantitative characterization of the aerosol and vapor exposure concentrations. Two female rodent species (B6C3F1 mice and Crl:CD rats) were exposed by nose-only inhalation to jet fuel kerosene at targeted concentrations of 0, 500, 1000, or 2000 mg/m(3) for 6 h daily for 28 d. Humoral, cell-mediated, and innate immune functions were subsequently evaluated. No marked effects were observed in either species on body weights, spleen or thymus weights, the T-dependent antibody-forming cell response (plaque assay), or the delayed-type hypersensitivity (DTH) response. With a few exceptions, spleen cell numbers and phenotypes were also unaffected. Natural killer (NK) cell activity in mice was unaffected, while the NK assessment in rats was not usable due to an unusually low response in all groups. These studies demonstrate that inhalation of jet fuel kerosene for 28 d at levels up to 2000 mg/m(3) did not adversely affect the functional immune responses of female mice and rats.
Collapse
Affiliation(s)
- Kimber L. White
- ImmunoTox®, Inc., Virginia BioTechnology Research Park, Richmond, Virginia, USA
- Address correspondence to Kimber L. White, Jr., PhD, ImmunoTox®, Inc., Virginia BioTechnology Research Park, 800 East Leigh Street; Suite 209, Richmond, VA 23219, USA. E-mail:
| | - Michael P. DeLorme
- ImmunoTox®, Inc., Virginia BioTechnology Research Park, Richmond, Virginia, USA
| | | | - Matthew J. Smith
- ImmunoTox®, Inc., Virginia BioTechnology Research Park, Richmond, Virginia, USA
| | - Vanessa L. Peachee
- ImmunoTox®, Inc., Virginia BioTechnology Research Park, Richmond, Virginia, USA
| |
Collapse
|
6
|
Boverhof DR, Krieger SM, Hotchkiss JA, Stebbins KE, Thomas J, Woolhiser MR. Assessment of the immunotoxic potential of trichloroethylene and perchloroethylene in rats following inhalation exposure. J Immunotoxicol 2012; 10:311-20. [PMID: 23167264 DOI: 10.3109/1547691x.2012.735275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immunotoxic potential of trichloroethylene (TCE) and perchloroethylene (PERC) was assessed after inhalation exposure through the evaluation of the antibody forming cell (AFC) response to sheep red blood cells (SRBC). Female Sprague-Dawley rats were exposed to TCE or PERC vapor at 0, 100, 300, or 1000 ppm for 6 h/day, 5 days/week for 4 weeks (20 exposure days). Additional 0 ppm control groups were included and were dosed with cyclophosphamide via intraperitoneal injection to serve as positive immunosuppressive controls in the SRBC assay. Additional end-points evaluated included liver, kidney, spleen, and thymus weights, hematology, cellular differentials in bronchoalveolar lavage fluid, histopathology of select tissues, and assessment of the phagocytic activity of pulmonary alveolar macrophage (PERC only). Exposure to the high concentration of TCE (1000 ppm) resulted in increases in relative liver and kidney weights and suppression of AFC responses (AFC/spleen and AFC/10(6) spleen cells) by ≈ 70%, while no treatment-related effects were noted at 100 and 300 ppm. Animals exposed to PERC at levels of 300 or 1000 ppm had statistically significant increases in relative liver weights that were accompanied by very slight hypertrophy of the centrilobular hepatocytes. Animals exposed to PERC did not demonstrate a treatment-related effect on the AFC response and no effect was noted on the phagocytic activity of pulmonary alveolar macrophages. The results of these studies indicate that TCE had immunotoxic potential only at high exposure concentrations (1000 ppm), while PERC, at similar exposure concentrations, did not display any evidence of immunotoxicity.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Toxicology and Environmental Research and Consulting, Dow Chemical Company, Midland, MI 48674, USA.
| | | | | | | | | | | |
Collapse
|