1
|
Harman RM, Das SP, Bartlett AP, Rauner G, Donahue LR, Van de Walle GR. Beyond tradition and convention: benefits of non-traditional model organisms in cancer research. Cancer Metastasis Rev 2020; 40:47-69. [PMID: 33111160 DOI: 10.1007/s10555-020-09930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Traditional laboratory model organisms are indispensable for cancer research and have provided insight into numerous mechanisms that contribute to cancer development and progression in humans. However, these models do have some limitations, most notably related to successful drug translation, because traditional model organisms are often short-lived, small-bodied, genetically homogeneous, often immunocompromised, are not exposed to natural environments shared with humans, and usually do not develop cancer spontaneously. We propose that assimilating information from a variety of long-lived, large, genetically diverse, and immunocompetent species that live in natural environments and do develop cancer spontaneously (or do not develop cancer at all) will lead to a more comprehensive understanding of human cancers. These non-traditional model organisms can also serve as sentinels for environmental risk factors that contribute to human cancers. Ultimately, expanding the range of animal models that can be used to study cancer will lead to improved insights into cancer development, progression and metastasis, tumor microenvironment, as well as improved therapies and diagnostics, and will consequently reduce the negative impacts of the wide variety of cancers afflicting humans overall.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Sanjna P Das
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gat Rauner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Leanne R Donahue
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Alex A, Chaney EJ, Žurauskas M, Criley JM, Spillman DR, Hutchison PB, Li J, Marjanovic M, Frey S, Arp Z, Boppart SA. In vivo characterization of minipig skin as a model for dermatological research using multiphoton microscopy. Exp Dermatol 2020; 29:953-960. [PMID: 33311854 PMCID: PMC7725480 DOI: 10.1111/exd.14152] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
Minipig skin is one of the most widely used non-rodent animal skin models for dermatological research. A thorough characterization of minipig skin is essential for gaining deeper understanding of its structural and functional similarities with human skin. In this study, three-dimensional (3-D) in vivo images of minipig skin was obtained non-invasively using a multimodal optical imaging system capable of acquiring two-photon excited fluorescence (TPEF) and fluorescence lifetime imaging microscopy (FLIM) images simultaneously. The images of the structural features of different layers of the minipig skin were qualitatively and quantitatively compared with those of human skin. Label-free imaging of skin was possible due to the endogenous fluorescence and optical properties of various components in the skin such as keratin, nicotinamide adenine dinucleotide phosphate (NAD(P)H), melanin, elastin, and collagen. This study demonstrates the capability of optical biopsy techniques, such as TPEF and FLIM, for in vivo non-invasive characterization of cellular and functional features of minipig skin, and the optical image-based similarities of this commonly utilized model of human skin. These optical imaging techniques have the potential to become promising tools in dermatological research for developing a better understanding of animal skin models, and for aiding in translational pre-clinical to clinical studies.
Collapse
Affiliation(s)
- Aneesh Alex
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- GSK, Collegeville, PA, USA
| | - Eric J. Chaney
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mantas Žurauskas
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer M. Criley
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Darold R. Spillman
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Phaedra B. Hutchison
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joanne Li
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | - Stephen A. Boppart
- GSK Center for Optical Molecular Imaging, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Zhang X, Fincke JR, Wynn CM, Johnson MR, Haupt RW, Anthony BW. Full noncontact laser ultrasound: first human data. LIGHT, SCIENCE & APPLICATIONS 2019; 8:119. [PMID: 31885865 PMCID: PMC6923376 DOI: 10.1038/s41377-019-0229-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 05/23/2023]
Abstract
Full noncontact laser ultrasound (LUS) imaging has several distinct advantages over current medical ultrasound (US) technologies: elimination of the coupling mediums (gel/water), operator-independent image quality, improved repeatability, and volumetric imaging. Current light-based ultrasound utilizing tissue-penetrating photoacoustics (PA) generally uses traditional piezoelectric transducers in contact with the imaged tissue or carries an optical fiber detector close to the imaging site. Unlike PA, the LUS design presented here minimizes the optical penetration and specifically restricts optical-to-acoustic energy transduction at the tissue surface, maximizing the generated acoustic source amplitude. With an appropriate optical design and interferometry, any exposed tissue surfaces can become viable acoustic sources and detectors. LUS operates analogously to conventional ultrasound but uses light instead of piezoelectric elements. Here, we present full noncontact LUS results, imaging targets at ~5 cm depths and at a meter-scale standoff from the target surface. Experimental results demonstrating volumetric imaging and the first LUS images on humans are presented, all at eye- and skin-safe optical exposure levels. The progression of LUS imaging from tissue-mimicking phantoms, to excised animal tissue, to humans in vivo is shown, with validation from conventional ultrasound images. The LUS system design insights and results presented here inspire further LUS development and are a significant step toward the clinical implementation of LUS.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, MA 02142 USA
| | - Jonathan R. Fincke
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, MA 02142 USA
| | - Charles M. Wynn
- Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02421 USA
| | - Matt R. Johnson
- Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02421 USA
| | - Robert W. Haupt
- Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02421 USA
| | - Brian W. Anthony
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, 45 Carleton St., Cambridge, MA 02142 USA
| |
Collapse
|
4
|
Skobowiat C, Brożyna AA, Janjetovic Z, Saowanee J, Oak AS, Kim TK, Panich U, Reiter RJ, Slominski AT. Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. J Pineal Res 2018; 65:e12501. [PMID: 29702749 PMCID: PMC6105533 DOI: 10.1111/jpi.12501] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
Abstract
Melatonin and its derivatives (N1 -acetyl-N2 -formyl-5-methoxykynurenine [AFMK] and N-acetyl serotonin [NAS]) have broad-spectrum protective effects against photocarcinogenesis, including both direct and indirect antioxidative actions, regulation of apoptosis and DNA damage repair; these data were primarily derived from in vitro models. This study evaluates possible beneficial effects of melatonin and its active derivatives against ultraviolet B (UVB)-induced harm to human and porcine skin ex vivo and to cultured HaCaT cells. The topical application of melatonin, AFMK, or NAS protected epidermal cells against UVB-induced 8-OHdG formation and apoptosis with a further increase in p53ser15 expression, especially after application of melatonin or AFMK but not after NAS use. The photoprotective action was observed in pre- and post-UVB treatment in both human and porcine models. Melatonin along with its derivatives upregulated also the expression of antioxidative enzymes after UVB radiation of HaCaT cells. The exogenous application of melatonin or its derivatives represents a potent and promising tool for preventing UVB-induced oxidative stress and DNA damage. This protection results in improved genomic, cellular, and tissue integrity against UVB-induced carcinogenesis, especially when applied prior to UV exposure. In addition, our ex vivo experiments provide fundamental justification for further testing the clinical utility of melatonin and metabolites as protectors again UVB in human subjects. Our ex vivo data constitute the bridge between vitro to vivo translation and thus justifies the pursue for further clinical utility of melatonin in maintaining skin homeostasis.
Collapse
Affiliation(s)
- Cezary Skobowiat
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty
of Pharmacy, Collegium Medicum, Nicolaus Copernicus University in Torun,
Poland
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Anna A. Brożyna
- Department of Tumor Pathology and Pathomorphology, Oncology Centre -
Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Faculty of Health
Sciences, Nicolaus Copernicus University Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Zorica Janjetovic
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Jeayeng Saowanee
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Bangkok, Thailand
| | - Allen S.W. Oak
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Tae-Kang Kim
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital,
Mahidol University, Bangkok, Thailand
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health, San
Antonio, Texas, USA
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center Cancer
Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL,
USA
- Laboratory Service of the VA Medical Center, Birmingham, AL,
USA
- Corresponding author: Andrzej T. Slominski MD, PhD;
Department of Dermatology, University of Alabama at Birmingham, 1720 2nd Avenue
S. VH 476C, Birmingham, AL 35294, USA; Phone: 205.934.5245; Fax: 205.934.5766;
| |
Collapse
|
5
|
Kozłowska A, Mikołajczyk A, Majewski M. Neurochemical difference between somato- and viscero-projecting sensory neurons in the pig. J Chem Neuroanat 2018; 94:8-20. [PMID: 30098395 DOI: 10.1016/j.jchemneu.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
The chemical coding of porcine somato (skin)- and viscero (urinary bladder)-projecting sensory neurons have been studied and compared using immunohistochemistry. Cell bodies of skin and bladder afferents were identified following Fast Blue injections into the skin of the hind leg as well as into wall of the urinary bladder, respectively. Immunohistochemistry revealed that small and medium-sized neurons projecting to both skin and bladder contained all of the studied substances i.e. substance P (SP), calcitonin gene-related pepide (CGRP), transient receptor potential vanilloid (TRPV1), lectin from Bandeiraea simplicifolia - Griffonia simplicifolia isolectin B4 (IB4) and galanin (GAL). Moreover, small-sized sensory neurons projecting to the bladder and skin of hind leg showed predominantly immunoreactivity to SP and TRPV1 and CGRP, as well as to CGRP and TRPV1 and IB4. It is worth stressing that the subset of sensory neurons innervating the skin exhibited these substances more often than bladder-projecting neurons. In addition, medium-sized skin-projecting neurons contained SP/GAL; SP/CGRP and CGRP/IB4 much more often than their bladder counterparts. On the other hand, small-sized perikarya that innervate the skin were less frequently expressed TRPV1, CGRP and GAL than the bladder-projecting neurons. In conclusion, the present report describes, for the first time, significant differences in the chemical coding between somato- and viscero-projecting sensory neurons in dorsal root ganglia. Moreover, these results provide morphological basis for further functional studies, which may explain the exact roles played by various subpopulations of somato- and viscero-projecting sensory neurons.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury Olsztyn, Poland.
| | - Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury Olsztyn, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury Olsztyn, Poland.
| |
Collapse
|
6
|
Summerfield A, Meurens F, Ricklin ME. The immunology of the porcine skin and its value as a model for human skin. Mol Immunol 2014; 66:14-21. [PMID: 25466611 DOI: 10.1016/j.molimm.2014.10.023] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/16/2014] [Accepted: 10/27/2014] [Indexed: 01/21/2023]
Abstract
The porcine skin has striking similarities to the human skin in terms of general structure, thickness, hair follicle content, pigmentation, collagen and lipid composition. This has been the basis for numerous studies using the pig as a model for wound healing, transdermal delivery, dermal toxicology, radiation and UVB effects. Considering that the skin also represents an immune organ of utmost importance for health, immune cells present in the skin of the pig will be reviewed. The focus of this review is on dendritic cells, which play a central role in the skin immune system as they serve as sentinels in the skin, which offers a large surface area exposed to the environment. Based on a literature review and original data we propose a classification of porcine dendritic cell subsets in the skin corresponding to the subsets described in the human skin. The equivalent of the human CD141(+) DC subset is CD1a(-)CD4(-)CD172a(-)CADM1(high), that of the CD1c(+) subset is CD1a(+)CD4(-)CD172a(+)CADM1(+/low), and porcine plasmacytoid dendritic cells are CD1a(-)CD4(+)CD172a(+)CADM1(-). CD209 and CD14 could represent markers of inflammatory monocyte-derived cells, either dendritic cells or macrophages. Future studies for example using transriptomic analysis of sorted populations are required to confirm the identity of these cells.
Collapse
Affiliation(s)
- Artur Summerfield
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland.
| | - François Meurens
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, 120 Veterinary Road, S7N 5E3 Saskatoon, Saskatchewan, Canada
| | - Meret E Ricklin
- Institute of Virology and Immunology, Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| |
Collapse
|
7
|
Turner NJ, Pezzone D, Badylak SF. Regional variations in the histology of porcine skin. Tissue Eng Part C Methods 2014; 21:373-84. [PMID: 25205147 DOI: 10.1089/ten.tec.2014.0246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Porcine skin is commonly used as a model for human skin injury and as a source material for biologic scaffold materials. Although remarkable similarities between porcine and human skin exist, regional anatomic variations present in human skin are also present in porcine skin. The objective of this study was to evaluate the structure of porcine skin from 11 different anatomic regions in the American Yorkshire crossbreed. Both qualitative and quantitative methods were used, with emphasis on epidermal and dermal thickness, hair follicle density, and collagen and elastin composition and distribution. The results showed that significant regional differences in skin histology exist, particularly with regard to the thickness of the dermis and epidermis and the amount of collagen and elastin within each tissue. Differences were also seen in the distribution of type I and type III collagen within the dermis. Therefore, while porcine skin shares many similarities with human skin, distinct regional differences in composition and morphology exist. This study highlights the importance of appreciating these regional differences to avoid misinterpretation of experimental results when using porcine skin as a human analogue.
Collapse
Affiliation(s)
- Neill J Turner
- 1 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|