1
|
Pfau JC, McLaurin B, Buck BJ, Miller FW. Amphibole asbestos as an environmental trigger for systemic autoimmune diseases. Autoimmun Rev 2024; 23:103603. [PMID: 39154740 PMCID: PMC11438489 DOI: 10.1016/j.autrev.2024.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
A growing body of evidence supports an association between systemic autoimmune disease and exposure to amphibole asbestos, a form of asbestos typically with straight, stiff, needle-like fibers that are easily inhaled. While the bulk of this evidence comes from the population exposed occupationally and environmentally to Libby Amphibole (LA) due to the mining of contaminated vermiculite in Montana, studies from Italy and Australia are broadening the evidence to other sites of amphibole exposures. What these investigations have done, that most historical studies have not, is to evaluate amphibole asbestos separately from chrysotile, the most common commercial asbestos in the United States. Here we review the current and historical evidence summarizing amphibole asbestos exposure as a risk factor for autoimmune disease. In both mice and humans, amphibole asbestos, but not chrysotile, drives production of both antinuclear autoantibodies (ANA) associated with lupus-like pathologies and pathogenic autoantibodies against mesothelial cells that appear to contribute to a severe and progressive pleural fibrosis. A growing public health concern has emerged with revelations that a) unregulated asbestos minerals can be just as pathogenic as commercial (regulated) asbestos, and b) bedrock and soil occurrences of asbestos are far more widespread than previously thought. While occupational exposures may be decreasing, environmental exposures are on the rise for many reasons, including those due to the creation of windborne asbestos-containing dusts from urban development and climate change, making this topic an urgent challenge for public and heath provider education, health screening and environmental regulations.
Collapse
Affiliation(s)
| | - Brett McLaurin
- Commonwealth University of Pennsylvania - Bloomsburg, Bloomsburg, PA, USA
| | | | - Frederick W Miller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Christofidou-Solomidou M, Pietrofesa RA, Park K, Albelda SM, Serve KM, Keil DE, Pfau JC. Synthetic secoisolariciresinol diglucoside (LGM2605) inhibits Libby amphibole fiber-induced acute inflammation in mice. Toxicol Appl Pharmacol 2019; 375:81-93. [PMID: 31022494 DOI: 10.1016/j.taap.2019.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exposure to the Libby amphibole (LA) asbestos-like fibers found in Libby, Montana, is associated with inflammatory responses in mice and humans, and an increased risk of developing mesothelioma, asbestosis, pleural disease, and systemic autoimmune disease. Flaxseed-derived secoisolariciresinol diglucoside (SDG) has anti-inflammatory, anti-fibrotic, and antioxidant properties. We have previously identified potent protective properties of SDG against crocidolite asbestos exposure modeled in mice. The current studies aimed to extend those findings by evaluating the immunomodulatory effects of synthetic SDG (LGM2605) on LA-exposed mice. METHODS Male and female C57BL/6 mice were given LGM2605 via gavage initiated 3 days prior to and continued for 3 days after a single intraperitoneal dose of LA fibers (200 μg) and evaluated on day 3 for inflammatory cell influx in the peritoneal cavity using flow cytometry. RESULTS LA exposure induced a significant increase (p < 0.0001) in spleen weight and peritoneal influx of white blood cells, all of which were reduced with LGM2605 with similar trends among males and females. Levels of peritoneal PMN cells were significantly (p < 0.0001) elevated post LA exposure, and were significantly (p < 0.0001) blunted by LGM2605. Importantly, LGM2605 significantly ameliorated the LA-induced mobilization of peritoneal B1a B cells. CONCLUSIONS LGM2605 reduced LA-induced acute inflammation and WBC trafficking supporting its possible use in mitigating downstream LA fiber-associated diseases. SUMMARY Following acute exposure to Libby amphibole (LA) asbestos-like fibers, synthetic SDG (LGM2605), a small synthetic molecule, significantly reduced the LA-induced increase in spleen weight and peritoneal inflammation in C57BL/6 male and female mice. Our findings highlight that LGM2605 has immunomodulatory properties and may, thus, likely be a chemopreventive agent for LA-induced diseases.
Collapse
Affiliation(s)
- Melpo Christofidou-Solomidou
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Stemmler Hall, Office Suite 227, Philadelphia, PA 19104, United States of America.
| | - Ralph A Pietrofesa
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Stemmler Hall, Office Suite 227, Philadelphia, PA 19104, United States of America.
| | - Kyewon Park
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Stemmler Hall, Office Suite 227, Philadelphia, PA 19104, United States of America.
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Stemmler Hall, Office Suite 227, Philadelphia, PA 19104, United States of America.
| | - Kinta M Serve
- Department of Biological Sciences, Life Sciences 207, Idaho State University, Pocatello, ID 83209, United States of America.
| | - Deborah E Keil
- Department of Microbiology and Immunology, Montana State University, Health Sciences Building Rm 133, PO Box 173610, Bozeman, MT 59717, United States of America.
| | - Jean C Pfau
- Department of Microbiology and Immunology, Montana State University, Health Sciences Building Rm 133, PO Box 173610, Bozeman, MT 59717, United States of America.
| |
Collapse
|
3
|
Reid A, Franklin P, de Klerk N, Creaney J, Brims F, Musk B, Pfau J. Autoimmune antibodies and asbestos exposure: Evidence from Wittenoom, Western Australia. Am J Ind Med 2018; 61:615-620. [PMID: 29797780 DOI: 10.1002/ajim.22863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Studies comparing different forms of asbestos are rare, and limited by the failure to compare results with unexposed populations. We compare autoimmune responses among former workers and residents of the crocidolite mining and milling town of Wittenoom, Western Australia, with an unexposed population. METHODS ANA testing using indirect immunofluorescence was performed on randomly selected serum samples from Wittenoom workers or residents and compared with those from participants of another unexposed cohort study. RESULTS ANA scores were higher in the Wittenoom participants compared with Busselton and the odds of being ANA positive was fivefold greater among Wittenoom participants than Busselton (OR 5.5, 95%CI 2.3-13.0). CONCLUSIONS This study is the first to report increased ANA positivity among persons exposed exclusively to crocidolite. This finding of a high frequency of positive ANA tests among crocidolite-exposed subjects may be an indicator for an increased risk of systemic autoimmune diseases and needs further scrutiny.
Collapse
Affiliation(s)
- Alison Reid
- School of Public Health; Curtin University; Bentley Western Australia
| | - Peter Franklin
- School of Population and Global Health; University of Western Australia; Perth Australia
| | - Nick de Klerk
- Telethon Kids Institute; University of Western Australia; Crawley Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Disease; Medical School; University of Western Australia; Crawley Australia
| | - Fraser Brims
- Curtin Medical School; Faculty of Health Sciences; Curtin University; Bentley Australia
- Department of Respiratory Medicine; Sir Charles Gairdner Hospital; Perth Western Australia
| | - Bill Musk
- School of Population and Global Health; University of Western Australia; Perth Australia
| | - Jean Pfau
- Department of Microbiology and Immunology; Montana State University; Bozeman Montana
| |
Collapse
|
4
|
Diegel R, Black B, Pfau JC, McNew T, Noonan C, Flores R. Case series: rheumatological manifestations attributed to exposure to Libby Asbestiform Amphiboles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:734-747. [PMID: 29927712 DOI: 10.1080/15287394.2018.1485124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
UNLABELLED An increased risk for Systemic Autoimmune Diseases (SAID) has been reported in Libby, Montana, where extensive exposures to fibrous amphiboles occurred due to mining and use of asbestos-laden vermiculite. In addition, positive antinuclear autoantibody tests are associated with exposure to Libby Asbestiform Amphiboles (LAA) in both humans and mice. Among 6603 subjects who underwent health screening at the Center for Asbestos Related Diseases (CARD, Libby MT), 13.8% were diagnosed with an autoimmune disease, with prevalence values for the most common SAID being significantly higher than expected in the United States. Among the CARD screening population, serological and clinical profiles are diverse, representing symptoms and autoantibodies reflective of systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis, and other rheumatic syndromes, including undifferentiated connective tissue disease (UCTD). Based upon screening of medical records by physicians with rheumatology expertise, the evolving nature of rheumatological disease in these patients is often atypical, with mixed diagnostic criteria and with a 1:1 male-to-female ratio. Through the Libby Epidemiology Research Program, cases were identified that illustrate clinical autoimmune outcomes with LAA exposure. Our goal was to better characterize SAID in Libby, MT in order to improve recognition of autoimmune outcomes associated with this exposure. In view of recent discoveries of widespread exposure to fibrous minerals in several areas of the U.S. and globally, it is critical to evaluate rheumatologic manifestations in other cohorts so that screening, surveillance, and diagnostic procedures are able to detect and recognize potential autoimmune outcomes of asbestos exposure. ABBREVIATIONS ANA, antinuclear autoantibody; ARD, Asbestos-Related Diseases; ATSDR, Agency for Toxic Substances & Disease Registry; CARD, Center for Asbestos Related Diseases; CCP, Cyclic citrullinated peptide antibody; CREST, limited cutaneous form of scleroderma; CT, computed tomography; DIP, Distal Interphalangeal Joint; DLCO, Diffusing Capacity of the Lung for CO2; DMARD, Disease Modifying Anti-Rheumatic Drugs; ENA, Extractable Nuclear Antigen antibodies; FVC, Forced Vital Capacity; LAA, Libby Asbestiform Amphiboles; LERP, Libby Epidemiology Research Program; MCP, Metacarpal Phalangeal Joint; PIP, Proximal Interphalangeal Joint; PIP, rheumatoid arthritis; RV, Residual Volume; SAID, Systemic autoimmune diseases; SLE, systemic lupus erythematosus; SSc, Systemic Sclerosis; TLC, Total Lung Capacity.
Collapse
Affiliation(s)
| | - Brad Black
- b Center for Asbestos Related Diseases , Libby , MT
| | - Jean C Pfau
- c Department of Microbiology and Immunology , Montana State University , Bozeman , MT
| | - Tracy McNew
- b Center for Asbestos Related Diseases , Libby , MT
| | - Curtis Noonan
- d Department of Biomedical and Pharmaceutical Sciences , University of Montana , Missoula , MT
| | - Raja Flores
- e Icahn School of Medicine at Mt Sinai , New York NY
| |
Collapse
|
5
|
Induction of protein citrullination and auto-antibodies production in murine exposed to nickel nanomaterials. Sci Rep 2018; 8:679. [PMID: 29330439 PMCID: PMC5766588 DOI: 10.1038/s41598-017-19068-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 12/21/2017] [Indexed: 11/18/2022] Open
Abstract
Citrullination, or the post-translational deimination of polypeptide-bound arginine, is involved in several pathological processes in the body, including autoimmunity and tumorigenesis. Recent studies have shown that nanomaterials can trigger protein citrullination, which might constitute a common pathogenic link to disease development. Here we demonstrated auto-antibody production in serum of nanomaterials-treated mice. Citrullination-associated phenomena and PAD levels were found to be elevated in nanomaterials -treated cell lines as well as in the spleen, kidneys and lymph nodes of mice, suggesting a systemic response to nanomaterials injection, and validated in human pleural and pericardial malignant mesothelioma (MM) samples. The observed systemic responses in mice exposed to nanomaterials support the evidence linking exposure to environmental factors with the development of autoimmunity responses and reinforces the need for comprehensive safety screening of nanomaterials. Furthermore, these nanomaterials induce pathological processes that mimic those observed in Pleural MM, and therefore require further investigations into their carcinogenicity.
Collapse
|
6
|
Gavett SH, Parkinson CU, Willson GA, Wood CE, Jarabek AM, Roberts KC, Kodavanti UP, Dodd DE. Persistent effects of Libby amphibole and amosite asbestos following subchronic inhalation in rats. Part Fibre Toxicol 2016; 13:17. [PMID: 27083413 PMCID: PMC4832450 DOI: 10.1186/s12989-016-0130-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/10/2016] [Indexed: 12/31/2022] Open
Abstract
Background Human exposure to Libby amphibole (LA) asbestos increases risk of lung cancer, mesothelioma, and non-malignant respiratory disease. This study evaluated potency and time-course effects of LA and positive control amosite (AM) asbestos fibers in male F344 rats following nose-only inhalation exposure. Methods Rats were exposed to air, LA (0.5, 3.5, or 25.0 mg/m3 targets), or AM (3.5 mg/m3 target) for 10 days and assessed for markers of lung inflammation, injury, and cell proliferation. Short-term results guided concentration levels for a stop-exposure study in which rats were exposed to air, LA (1.0, 3.3, or 10.0 mg/m3), or AM (3.3 mg/m3) 6 h/day, 5 days/week for 13 weeks, and assessed 1 day, 1, 3, and 18 months post-exposure. Fibers were relatively short; for 10 mg/m3 LA, mean length of all structures was 3.7 μm and 1 % were longer than 20 μm. Results Ten days exposure to 25.0 mg/m3 LA resulted in significantly increased lung inflammation, fibrosis, bronchiolar epithelial cell proliferation and hyperplasia, and inflammatory cytokine gene expression compared to air. Exposure to 3.5 mg/m3 LA resulted in modestly higher markers of acute lung injury and inflammation compared to AM. Following 13 weeks exposure, lung fiber burdens correlated with exposure mass concentrations, declining gradually over 18 months. LA (3.3 and 10.0 mg/m3) and AM produced significantly higher bronchoalveolar lavage markers of inflammation and lung tissue cytokines, Akt, and MAPK/ERK pathway components compared to air control from 1 day to 3 months post-exposure. Histopathology showed alveolar inflammation and interstitial fibrosis in all fiber-exposed groups up to 18 months post-exposure. Positive dose trends for incidence of alveolar epithelial hyperplasia and bronchiolar/alveolar adenoma or carcinoma were observed among LA groups. Conclusions Inhalation of relatively short LA fibers produced inflammatory, fibrogenic, and tumorigenic effects in rats which replicate essential attributes of asbestos-related disease in exposed humans. Fiber burden, inflammation, and activation of growth factor pathways may persist and contribute to lung tumorigenesis long after initial LA exposure. Fiber burden data are being used to develop a dosimetry model for LA fibers, which may provide insights on mode of action for hazard assessment. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0130-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen H Gavett
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Carl U Parkinson
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, 27711, USA
| | - Gabrielle A Willson
- Experimental Pathology Laboratories, Inc. (EPL®), Research Triangle Park, NC, 27711, USA
| | - Charles E Wood
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Annie M Jarabek
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Kay C Roberts
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, 27711, USA
| | - Urmila P Kodavanti
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Darol E Dodd
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
7
|
Cyphert JM, McGee MA, Nyska A, Schladweiler MC, Kodavanti UP, Gavett SH. Long-term toxicity of naturally occurring asbestos in male Fischer 344 rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:49-60. [PMID: 26818398 DOI: 10.1080/15287394.2015.1099123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Naturally occurring asbestos (NOA) fibers are found in geologic deposits that may be disturbed by mining, earthworks, or natural processes, resulting in adverse health risks to exposed individuals. The toxicities of Libby amphibole and NOA samples including Sumas Mountain chrysotile (SM), El Dorado tremolite (ED), and Ontario ferroactinolite cleavage fragments (ON) were compared in male Fischer 344 (F344) rats 15 mo after exposure. Rat-respirable fractions of LA and SM displayed greater mean lengths and aspect ratios than ED and ON. After a single intratracheal (IT) instillation (0.5 or 1.5 mg/rat), persistent changes in ventilatory parameters and a significant increase in lung resistance at baseline and after methacholine aerosol dosing were found only in rats exposed to 1.5 mg SM. High-dose ED significantly elevated bronchoalveolar lavage lactate dehydrogenase (LDH) activity and protein levels, while high-dose SM increased γ-glutamyl transferase and LDH activities. A moderate degree of lung interstitial fibrosis after exposure to 1.5 mg SM persisted 15 mo after exposure, unchanged from previous findings at 3 mo. LA induced mild fibrosis, while ED and ON produced minimal and no apparent fibrosis, respectively. Bronchioloalveolar carcinoma was observed 15 mo after exposure to LA or ED. Data demonstrated that SM, given by bolus IT dosing on an equivalent mass basis, induced greater pulmonary function deficits, airway hyperresponsiveness, and interstitial fibrosis than other NOA, although unlike LA and ED, no apparent evidence for carcinogenicity was found. All NOA samples except ON cleavage fragments produced some degree of long-term toxicity.
Collapse
Affiliation(s)
- Jaime M Cyphert
- a Curriculum in Toxicology , University of North Carolina School of Medicine , Chapel Hill , North Carolina , USA
| | - Marie A McGee
- b Oak Ridge Institute for Science and Education , Oak Ridge , Tennessee , USA
| | - Abraham Nyska
- c National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , North Carolina , USA
- d Sackler School of Medicine , Tel Aviv University , Timrat , Israel
| | - Mette C Schladweiler
- e Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| | - Urmila P Kodavanti
- e Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| | - Stephen H Gavett
- e Environmental Public Health Division , National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park , North Carolina , USA
| |
Collapse
|
8
|
Wieland DCF, Degen P, Zander T, Gayer S, Raj A, An J, Dėdinaitė A, Claesson P, Willumeit-Römer R. Structure of DPPC-hyaluronan interfacial layers - effects of molecular weight and ion composition. SOFT MATTER 2016; 12:729-740. [PMID: 26508354 DOI: 10.1039/c5sm01708d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hyaluronan and phospholipids play an important role in lubrication in articular joints and provide in combination with glycoproteins exceptionally low friction coefficients. We have investigated the structural organization of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) Langmuir layers at the solution-air interface at different length scales with respect to the adsorption of hyaluronan (HA). This allows us to assemble a comprehensive picture of the adsorption and the resulting structures, and how they are affected by the molecular weight of HA and the presence of calcium ions. Brewster angle microscopy and grazing incident diffraction were used to determine the lateral structure at the micro- and macro scale. The data reveals an influence of HA on both the macro and micro structure of the DPPC Langmuir layer, and that the strength of this effect increases with decreasing molecular weight of HA and in presence of calcium ions. Furthermore, from X-ray reflectivity measurements we conclude that HA adsorbs to the hydrophilic part of DPPC, but data also suggest that two types of interfacial structures are formed at the interface. We argue that hydrophobic forces and electrostatic interactions play important rules for the association between DPPC and HA. Surface pressure area isotherms were used to determine the influence of HA on the phase behavior of DPPC while electrophoretic mobility measurements were used to gain insight into the binding of calcium ions to DPPC vesicles and hyaluronan.
Collapse
Affiliation(s)
- D C Florian Wieland
- Helmholtz Zentrum Geesthacht, Institute for Materials Research, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lemen RA. Mesothelioma from asbestos exposures: Epidemiologic patterns and impact in the United States. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:250-265. [PMID: 27705549 DOI: 10.1080/10937404.2016.1195323] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mesothelioma, a rare tumor, is highly correlated with asbestos exposure. Mesothelioma, similar to all asbestos-related diseases, is dose/intensity dependent to some degree, and studies showed the risk of mesothelioma rises with cumulative exposures. Multiple processes occur in an individual before mesothelioma occurs. The impact of mesothelioma in the United States has been continuous over the last half century, claiming between 2,000 and 3,000 lives each year. Mesothelioma is a preventable tumor that is more frequently reported as associated with asbestos exposure among men than women. However, the rate of asbestos-associated mesothelioma is on the rise among women due to better investigation into their histories of asbestos exposure. It is of interest that investigators detected asbestos-associated cases of mesothelioma in women from nonoccupational sources-that is, bystander, incidental, or take-home exposures. It is postulated that asbestos-associated mesotheliomas, in both men and women, are likely underreported. However, with the implementation of the most recent ICD-10 coding system, the correlation of mesothelioma with asbestos exposure is expected to rise to approximately 80% in the United States. This study examined the demographic and etiological nature of asbestos-related mesothelioma.
Collapse
Affiliation(s)
- Richard A Lemen
- a Department of Environmental Health , Emory University , Atlanta , Georgia , USA
| |
Collapse
|
10
|
Larson D, Powers A, Ambrosi JP, Tanji M, Napolitano A, Flores EG, Baumann F, Pellegrini L, Jennings CJ, Buck BJ, McLaurin BT, Merkler D, Robinson C, Morris P, Dogan M, Dogan AU, Pass HI, Pastorino S, Carbone M, Yang H. Investigating palygorskite's role in the development of mesothelioma in southern Nevada: Insights into fiber-induced carcinogenicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:213-230. [PMID: 27705545 PMCID: PMC5062041 DOI: 10.1080/10937404.2016.1195321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Similar to asbestos fibers, nonregulated mineral fibers can cause malignant mesothelioma (MM). Recently, increased proportions of women and young individuals with MM were identified in southern Nevada, suggesting that environmental exposure to carcinogenic fibers was causing the development of MM. Palygorskite, a fibrous silicate mineral with a history of possible carcinogenicity, is abundant in southern Nevada. In this study, our aim was to determine whether palygorskite was contributing to the development of MM in southern Nevada. While palygorskite, in vitro, displayed some cytotoxicity toward primary human mesothelial (HM) cells and reduced their viability, the effects were roughly half of those observed when using similar amounts of crocidolite asbestos. No Balb/c (0/19) or MexTAg (0/18) mice injected with palygorskite developed MM, while 3/16 Balb/c and 13/14 MexTAg mice injected with crocidolite did. Lack of MM development was associated with a decreased acute inflammatory response, as injection of palygorskite resulted in lower percentages of macrophages (p = .006) and neutrophils (p = .02) in the peritoneal cavity 3 d after exposure compared to injection of crocidolite. Additionally, compared to mice injected with crocidolite, palygorskite-injected mice had lower percentages of M2 (tumor-promoting) macrophages (p = .008) in their peritoneal cavities when exposed to fiber for several weeks. Our study indicates that palygorskite found in the environment in southern Nevada does not cause MM in mice, seemingly because palygorskite, in vivo, fails to elicit inflammation that is associated with MM development. Therefore, palygorskite is not a likely contributor to the MM cases observed in southern Nevada.
Collapse
Affiliation(s)
- David Larson
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| | - Amy Powers
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| | - Jean-Paul Ambrosi
- CNRS, IRD, CEREGE UM34, Aix-Marseille Université, Aix en Provence, France
| | - Mika Tanji
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| | - Andrea Napolitano
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawai‘i at Manoa, Honolulu, Hawai‘i, USA
| | - Erin G. Flores
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| | - Francine Baumann
- ERIM, Université de la Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Laura Pellegrini
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| | - Cormac J. Jennings
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| | - Brenda J. Buck
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Brett T. McLaurin
- Department of Environmental, Geographical and Geological Sciences, Bloomsburg University of Pennsylvania, Bloomsburg, Pennsylvania, USA
| | - Doug Merkler
- U.S. Department of Agriculture, Natural Resources Conservation Service, Las Vegas, Nevada, USA
| | - Cleo Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Institute for Medical Research, Nedlands, Perth, WesternAustralia
| | - Paul Morris
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
- Department of Thoracic Surgery, Queen’s Medical Center, Honolulu, Hawai‘i, USA
| | - Meral Dogan
- Geological Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey
| | - A. Umran Dogan
- Chemical and Biochemical Engineering Department & Center for Global and Regional Environmental Research, University of Iowa, Iowa City, Iowa, USA
| | - Harvey I. Pass
- Department of Cardiothoracic Surgery, New York Langone Medical Center, New York, New York, USA
| | - Sandra Pastorino
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| | - Michele Carbone
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| | - Haining Yang
- University of Hawai‘i Cancer Center, University of Hawai‘i, Honolulu, Hawai‘i, USA
| |
Collapse
|
11
|
Andujar P, Lacourt A, Brochard P, Pairon JC, Jaurand MC, Jean D. Five years update on relationships between malignant pleural mesothelioma and exposure to asbestos and other elongated mineral particles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2016; 19:151-172. [PMID: 27705546 DOI: 10.1080/10937404.2016.1193361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite the reduction of global asbestos consumption and production due to the ban or restriction of asbestos uses in more than 50 countries since the 1970s, malignant mesothelioma remains a disease of concern. Asbestos is still used, imported, and exported in several countries, and the number of mesothelioma deaths may be expected to increase in the next decades in these countries. Asbestos exposure is the main risk factor for malignant pleural mesothelioma, but other types of exposures are linked to the occurrence of this type of cancer. Although recent treatments improve the quality of life of patients with mesothelioma, malignant pleural mesothelioma remains an aggressive disease. Recent treatments have not resulted in appreciable improvement in survival, and thus development of more efficient therapies is urgently needed. The development of novel therapeutic strategies is dependent on our level of knowledge of the physiopathological and molecular changes that mesothelial cells acquired during the neoplastic process. During the past 5 years, new findings have been published on the etiology, epidemiology, molecular changes, and innovative treatments of malignant pleural mesothelioma. This review aims to update the findings of recent investigations on etiology, epidemiology, and molecular changes with a focus on (1) attributable risk of asbestos exposure in men and women and (2) coexposure to other minerals and other elongated mineral particles or high aspect ratio nanoparticles. Recent data obtained on genomic and gene alterations, pathways deregulations, and predisposing factors are summarized.
Collapse
Affiliation(s)
- Pascal Andujar
- a Institut Santé Travail Paris-Est , Université Paris-Est , Créteil , France
- b CHI Créteil , Service de Pneumologie et Pathologie Professionnelle, DHU A-TVB , Créteil , France
- c INSERM U955 , Equipe 4 , Créteil , France
- d Universite Paris-Est Créteil , Faculté de Médecine , Créteil , France
| | - Aude Lacourt
- e INSERM U1219 , EPICENE , Bordeaux , France
- f ISPED , Université de Bordeaux , Bordeaux , France
| | - Patrick Brochard
- f ISPED , Université de Bordeaux , Bordeaux , France
- g CHU Bordeaux , Bordeaux , France
| | - Jean-Claude Pairon
- a Institut Santé Travail Paris-Est , Université Paris-Est , Créteil , France
- b CHI Créteil , Service de Pneumologie et Pathologie Professionnelle, DHU A-TVB , Créteil , France
- c INSERM U955 , Equipe 4 , Créteil , France
- d Universite Paris-Est Créteil , Faculté de Médecine , Créteil , France
| | - Marie-Claude Jaurand
- h INSERM , UMR-1162, Génomique fonctionnelle des tumeurs solides , Paris , France
- i Université Paris Descartes , Labex Immuno-Oncology , Sorbonne Paris Cité, Paris , France
- j Université Paris Diderot , IUH , Paris , France
- k Université Paris 13 , Sorbonne Paris Cité , Bobigny , France
| | - Didier Jean
- h INSERM , UMR-1162, Génomique fonctionnelle des tumeurs solides , Paris , France
- i Université Paris Descartes , Labex Immuno-Oncology , Sorbonne Paris Cité, Paris , France
- j Université Paris Diderot , IUH , Paris , France
- k Université Paris 13 , Sorbonne Paris Cité , Bobigny , France
| |
Collapse
|
12
|
Carlin DJ, Larson TC, Pfau JC, Gavett SH, Shukla A, Miller A, Hines R. Current Research and Opportunities to Address Environmental Asbestos Exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:A194-7. [PMID: 26230287 PMCID: PMC4529018 DOI: 10.1289/ehp.1409662] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Asbestos-related diseases continue to result in approximately 120,000 deaths every year in the United States and worldwide. Although extensive research has been conducted on health effects of occupational exposures to asbestos, many issues related to environmental asbestos exposures remain unresolved. For example, environmental asbestos exposures associated with a former mine in Libby, Montana, have resulted in high rates of nonoccupational asbestos-related disease. Additionally, other areas with naturally occurring asbestos deposits near communities in the United States and overseas are undergoing investigations to assess exposures and potential health risks. Some of the latest public health, epidemiological, and basic research findings were presented at a workshop on asbestos at the 2014 annual meeting of the Society of Toxicology in Phoenix, Arizona. The following focus areas were discussed: a) mechanisms resulting in fibrosis and/or tumor development; b) relative toxicity of different forms of asbestos and other hazardous elongated mineral particles (EMPs); c) proper dose metrics (e.g., mass, fiber number, or surface area of fibers) when interpreting asbestos toxicity; d) asbestos exposure to susceptible populations; and e) using toxicological findings for risk assessment and remediation efforts. The workshop also featured asbestos research supported by the National Institute of Environmental Health Sciences, the Agency for Toxic Substances and Disease Registry, and the U.S. Environmental Protection Agency. Better protection of individuals from asbestos-related health effects will require stimulation of new multidisciplinary research to further our understanding of what constitutes hazardous exposures and risk factors associated with toxicity of asbestos and other hazardous EMPs (e.g., nanomaterials).
Collapse
Affiliation(s)
- Danielle J Carlin
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|