1
|
Gao W, Lv X, Li H, Yan XS, Huo DS, Yang ZJ, Zhang ZG, Jia JX. Dexmedetomidine pretreatment alleviates brain injury in middle cerebral artery occlusion (MCAO) model rats by activating PI3K/AKT/NF-κB signaling pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025:1-11. [PMID: 39995113 DOI: 10.1080/15287394.2025.2469088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a prevalent clinical complication associated with reperfusion following ischemic stroke resulting in neuronal damage and cognitive impairment. Dexmedetomidine (DEX), a highly selective α2-adrenoceptor agonist with sedative, and analgesic properties, is frequently utilized as a sedative anesthetic in clinical surgeries, and believed to play a crucial role in the prognosis of patients suffering from CIRI. However, the mechanism underlying DEX in CIRI remains to be determined. This study aimed to investigate the neuroprotective effects of Dex in rats suffering from CIRI. In the treatment group, DEX (50 µg/kg) was administered intraperitoneally 30 min prior to surgery. Middle cerebral artery occlusion (MCAO) used as a model of CIRI occurred with cerebral artery occlusion for 2 h was followed by reperfusion with blood for 24, 72, 120 or 168 h. Neurological function as assessed by the Longa neurological function score test demonstrated significantly reduced neurological scores and increased % infarct size in MCAO group which was blocked by DEX suggesting that DEX might be effective in treating ischemic stroke. In the MCAO animals, 2,3,5-triphenyltetrazolium chloride (TTC) showed large marked areas of cerebral infarction which were diminished in size by DEX. Using Western blot analysis, results showed that in MCAO rats protein expression levels of TNF-α and IL-6 were increased accompanied by reduced protein expression levels of PI3K/AKT signaling pathway. DEX pretreatment reversed the effects of MCAO as evidenced by decrease in protein expression levels of TNF-α and IL-6 associated with elevated protein expression levels of PI3K/AKT/NF-κB signaling pathway. Data demonstrated that DEX pretreatment improved the neuromotor performance and cognitive functions in animals suffering from consequences of MCAO by diminishing inflammation and activation of the PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, The Third Hospital of Baogang Group, Baotou, China
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Xue Lv
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Hao Li
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Zhan-Jun Yang
- Department of Human Anatomy, Chifeng University, Chi feng, China
| | - Zhi-Guo Zhang
- Department of Anesthesiology, The Third Hospital of Baogang Group, Baotou, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| |
Collapse
|
2
|
Wang L, Jia JX, Zhang SB, Song W, Yan XS, Huo DS, Wang H, Wu LE, Yang ZJ. The protective effect and mechanism of glycosides of cistanche deserticola on rats in middle cerebral artery occlusion (MCAO) model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:448-456. [PMID: 38557302 DOI: 10.1080/15287394.2024.2337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurology, The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Shi-Bin Zhang
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Wei Song
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Li-E Wu
- Department of Neurology, The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Zhan-Jun Yang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
- Department of Human Anatomy, Chifeng University, Chifeng, China
| |
Collapse
|
3
|
Queiroz Junior NF, Steffani JA, Machado L, Longhi PJH, Montano MAE, Martins M, Machado SA, Machado AK, Cadoná FC. Antioxidant and cytoprotective effects of avocado oil and extract ( Persea americana Mill) against rotenone using monkey kidney epithelial cells (Vero). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:875-890. [PMID: 34256683 DOI: 10.1080/15287394.2021.1945515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Oxidative stress is known to be involved in development of numerous diseases including cardiovascular, respiratory, renal, kidney and cancer. Thus, investigations that mimic oxidative stress in vitro may play an important role to find new strategies to control oxidative stress and subsequent consequences are important. Rotenone, widely used as a pesticide has been used as a model to simulate oxidative stress. However, this chemical was found to produce several diseases. Therefore, the aim of this study was to investigate the antioxidant and cytoprotective effect of avocado (Persea americana Mill) extract and oil in monkey kidney epithelial cells (VERO) exposed to rotenone. VERO cells were exposed to IC50 of rotenone in conjunction with different concentrations of avocado extract and oil (ranging from 1 to 1000 µg/ml), for 24 hr. Subsequently, cell viability and oxidative metabolism were assessed. Data demonstrated that avocado extract and oil in the presence of rotenone increased cellular viability at all tested concentrations compared to cells exposed only to rotenone. In addition, extract and avocado oil exhibited antioxidant action as evidenced by decreased levels of reactive oxygen species (ROS), superoxide ion, and lipid peroxidation, generated by rotenone. Further, avocado extract and oil appeared to be safe, since these compounds did not affect cell viability and or generate oxidative stress. Therefore, avocado appears to display a promising antioxidant potential by decreasing oxidative stress.
Collapse
Affiliation(s)
| | - Jovani Antônio Steffani
- Postgraduate Program of Biosciences and Health, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Larissa Machado
- Biological Sciences Course, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | | | - Mathias Martins
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | - Sérgio Abreu Machado
- Postgraduate Program in Health and Animal Production, West University of Santa Catarina, Joaçaba, SC, Brazil
| | | | - Francine Carla Cadoná
- Postgraduate Program in Sciences of Health and Life, Franciscan University, Santa Maria, RS, Brazil
| |
Collapse
|
4
|
Wu P, Yan XS, Zhou LL, Liu XL, Huo DS, Song W, Fang X, Wang H, Yang ZJ, Jia JX. Involvement of apoptosis in the protective effects of Dracocephalum moldavaica in cerebral ischemia reperfusion rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1036-1044. [PMID: 31736438 DOI: 10.1080/15287394.2019.1684707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An extract of Dracocephalum moldevica (DML) was found to exert protective effects on cerebral ischemia-reperfusion injury (CIRI); however, the mechanisms underlying the observed actions of this plant-derived mixture remain to be determined. Thus, the aim of this study was to examine the influence of DML on CIRI rat model induced by middle cerebral artery occlusion (MCAO). The following parameters were measured: (1) viable neurons in the infarcted area using Nissl staining; and (2) immunohistochemistry and Western blot were employed to determine protein expression levels of p53, bcl-2 associated X protein (bax) and B-cell lymphoma-2 (bcl-2), three biomarkers of apoptosis. MCAO significantly decreased the number of viable cortical pyramidal neurons in the infarcted area, while treatment with DML extract significantly elevated the number of viable neurons. MCAO was found to significantly elevate in gene expression levels of p53 and protein expression levels bax accompanied by diminished protein expression levels of bcl-2. Prior administration of DML extract produced marked reduction in gene expression levels of p53 and protein expression levels bax but increased in protein expression levels of bcl-2. Data suggested apoptosis was initiated in MCAO and that DML was effective in treating CIRI via an anti-apoptotic action as evidenced by inhibition of gene expression levels of p53 and protein expression levels of bax with concomitant elevation in protein expression levels of bcl-2. Our findings suggest that extract of DML may prove beneficial in treatment of cerebrovascular disorders.
Collapse
Affiliation(s)
- Peng Wu
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Li-Li Zhou
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Xin-Lang Liu
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Wei Song
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Xin Fang
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Zhan-Jun Yang
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Inner Mongolia, China
| |
Collapse
|