1
|
Li B, Jin X, Chan HM. Effects of low doses of methylmercury (MeHg) exposure on definitive endoderm cell differentiation in human embryonic stem cells. Arch Toxicol 2023; 97:2625-2641. [PMID: 37612375 PMCID: PMC10475006 DOI: 10.1007/s00204-023-03580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
Fetal development is one of the most sensitive windows to methylmercury (MeHg) toxicity. Laboratory and epidemiological studies have shown a dose-response relationship between fetal MeHg exposure and neuro performance in different life stages from infants to adults. In addition, MeHg exposure has been reported to be associated with disorders in endoderm-derived organs, such as morphological changes in liver cells and pancreatic cell dysfunctions. However, the mechanisms of the effects of MeHg on non-neuronal organs or systems, especially during the early development of endoderm-derived organs, remain unclear. Here we determined the effects of low concentrations of MeHg exposure during the differentiation of definitive endoderm (DE) cells from human embryonic stem cells (hESCs). hESCs were exposed to MeHg (0, 10, 100, and 200 nM) that covers the range of Hg concentrations typically found in human maternal blood during DE cell induction. Transcriptomic analysis showed that sub-lethal doses of MeHg exposure could alter global gene expression patterns during hESC to DE cell differentiation, leading to increased expression of endodermal genes/proteins and the over-promotion of endodermal fate, mainly through disrupting calcium homeostasis and generating ROS. Bioinformatic analysis results suggested that MeHg exerts its developmental toxicity mainly by disrupting ribosome biogenesis during early cell lineage differentiation. This disruption could lead to aberrant growth or dysfunctions of the developing endoderm-derived organs, and it may be the underlying mechanism for the observed congenital diseases later in life. Based on the results, we proposed an adverse outcome pathway for the effects of MeHg exposure during human embryonic stem cells to definitive endoderm differentiation.
Collapse
Affiliation(s)
- Bai Li
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Xiaolei Jin
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Hing Man Chan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Senoro DB, Plasus MMG, Gorospe AFB, Nolos RC, Baaco AT, Lin C. Metals and Metalloid Concentrations in Fish, Its Spatial Distribution in PPC, Philippines and the Attributable Risks. TOXICS 2023; 11:621. [PMID: 37505586 PMCID: PMC10383155 DOI: 10.3390/toxics11070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Fish is an important source of protein in human meals around the world. However, the fish that we are eating may be contaminated with toxicants such as metals and metalloids (MMs), which may pose health risks to consumers. Information on MMs content in fishes and their potential spatial distribution scenarios would provide knowledge to the community to create strategies and protect human health. Hence, this study assessed and determined the health risk levels of MMs in both brackish and marine water fish (BMF) in Puerto Princesa City (PPC), Palawan Province, Philippines. PPC has an existing abandoned open mine pit near the PPC coastline called the "pit lake". The concentrations of As, Ba, Cu, Fe, Mn, Hg, and Zn in fishes were analyzed using portable Olympus Vanta X-ray Fluorescence (pXRF), and the spatial distribution of MMs concentrations in BMF was analyzed using a GIS (geographic information system). Fishes were sampled from fishing boat landing sites and nearby seafood markets. The results revealed that the concentration of MMs in marine fish was generally higher than the brackish water fish. It was recorded that the Hg concentration in marine water fish meat was higher than in brackish water fish meat. The Mn concentration in marine water fish exceeded the permissible limits set by international bodies. An elevated concentration of Mn in BMF was detected across the northern part of PPC, and an elevated concentration of Hg in marine fishes was recorded in the southeast area, where the fish landing sites are located. Ba was also detected in BMF across the southern part of PPC. Moreover, an elevated concentration of Cu was detected in MBF in the northeast and in marine fish in the southeastern area of PPC. Further, this paper elaborates the non-carcinogenic and carcinogenic risks of these fishes to the PPC population and tourists with respect to the MMs content in fish meat.
Collapse
Affiliation(s)
- Delia B Senoro
- School of Civil, Environmental and Geological Engineering, Mapua University, Manila 1002, Philippines
- Resiliency and Sustainable Development Laboratory, Yuchengco Innovation Center, Mapua University, Manila 1002, Philippines
- Mapua-MSC Joint Research Laboratory, Marinduque State College, Boac 4900, Philippines
| | - Maria Mojena G Plasus
- College of Fisheries and Aquatic Sciences, Abba Building, Western Philippines University, San Juan 5300, Philippines
| | - Alejandro Felipe B Gorospe
- Resiliency and Sustainable Development Laboratory, Yuchengco Innovation Center, Mapua University, Manila 1002, Philippines
| | - Ronnel C Nolos
- Mapua-MSC Joint Research Laboratory, Marinduque State College, Boac 4900, Philippines
- College of Environmental Studies, Marinduque State College, Boac 4900, Philippines
| | - Allaine T Baaco
- College of Fisheries and Aquatic Sciences, Abba Building, Western Philippines University, San Juan 5300, Philippines
- College of Agriculture, Forestry and Environmental Sciences, Western Philippines University, San Juan 5302, Philippines
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|
3
|
Alilović A, Živković I, Horvat M. Optimisation of distillation as an isolation method for the determination of low methylmercury concentrations in urine samples. Talanta 2023; 264:124765. [PMID: 37295056 DOI: 10.1016/j.talanta.2023.124765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) speciation in urine requires a robust, reproducible and sensitive technique that enables reliable measurements in limited sample volumes. Conventional MeHg extraction by acid digestion allows for processing of only small amounts of urine digest, making accurate MeHg determination in low-concentration samples virtually impossible. Distillation has been proven as an efficient isolation method with very low detection limits for measuring MeHg in water samples; therefore, in this study, it was optimised for urine samples. Combined with aqueous phase ethylation, purging with nitrogen, preconcentration on Tenax trap, isothermal gas chromatography and cold vapour atomic fluorescence detection, distillation achieved high and repeatable urine spike recoveries of 94% ± 7%. Larger measured aliquot volume led to a significantly lower limit of detection (LOD) for distillation compared with acid digestion (1.1 versus 5.5 pg g-1 urine). Thirty-two general population urine samples were analysed using both methods, and the results were compared. Distillation led to better separation of MeHg from inorganic Hg and the matrix. Good correlation was observed between the results obtained by the two methods for samples with MeHg concentrations above 10 pg g-1 urine (slope = 0.9492, R2 = 0.9879). For samples below this MeHg concentration, distillation was superior, enabling the measurement of MeHg in 9 out of 12 urine samples that were below the LOD of acid digestion. Distillation had significantly lower measurement uncertainty, particularly in the low-concentration samples, where the expanded combined standard uncertainty of the acid digestion method reached as high as 43.2% (k = 2), predominantly owing to poor sample repeatability.
Collapse
Affiliation(s)
- Adna Alilović
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia
| | - Igor Živković
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia; Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Milena Horvat
- International Postgraduate School Jožef Stefan, Ljubljana, Slovenia; Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Selenium Status: Its Interactions with Dietary Mercury Exposure and Implications in Human Health. Nutrients 2022; 14:nu14245308. [PMID: 36558469 PMCID: PMC9785339 DOI: 10.3390/nu14245308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Selenium is an essential trace element in humans and animals and its role in selenoprotein and enzyme antioxidant activity is well documented. Food is the principal source of selenium, and it is important that selenium status in the body is adequately maintained for physiological functions. There has been increasing attention on the role of selenium in mitigating the toxic effects of mercury exposure from dietary intake in humans. In contrast, mercury is a neurotoxin, and its continuous exposure can cause adverse health effects in humans. The interactions of selenium and mercury are multi-factorial and involve complex binding mechanisms between these elements at a molecular level. Further insights and understanding in this area may help to evaluate the health implications of dietary mercury exposure and selenium status. This review aims to summarise current information on the interplay of the interactions between selenium and mercury in the body and the protective effect of selenium on at-risk groups in a population who may experience long-term mercury exposure.
Collapse
|
5
|
Quantitative risk-benefit assessment of Portuguese fish and other seafood species consumption scenarios. Br J Nutr 2022; 128:1997-2010. [PMID: 34872627 DOI: 10.1017/s0007114521004773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Portugal has high fish/seafood consumption, which may have both risks and benefits. This study aims to quantify the net health impact of hypothetical scenarios of fish/seafood consumption in the Portuguese population using a risk-benefit assessment methodology. Consumption data from the National Food, Nutrition and Physical Activity Survey 2015-2016 (n 5811) were used to estimate the mean exposure to methylmercury and EPA + DHA in the current and the alternative scenarios considered. Alternative scenarios (alt) were modelled using probabilistic approaches to reflect substitutions from the current consumption in the type of fish/seafood (alt1: excluding predatory fishes; alt2: including only methylmercury low-level fishes) or in the frequency of weekly fish/seafood consumption (alt3 to alt6: 1, 3, 5 or 7 times a week, replacing fish/seafood meals with meat or others). The overall health impact of these scenarios was quantified using disability-adjusted life years (DALY). In the Portuguese population, about 11 450 DALY could be prevented each year if the fish/seafood consumption increased to a daily basis. However, such a scenario would result in 1398 extra DALY considering the consumption by pregnant women and the respective risk on fetal neurodevelopment. Our findings support a recommendation to increase fish/seafood consumption up to 7 times/week. However, for pregnant women and children, special considerations must be proposed to avoid potential risks on fetal neurodevelopment due to methylmercury exposure.
Collapse
|
6
|
Branco V, Carvalho L, Barboza C, Mendes E, Cavaco A, Carvalho C. Selenium and Redox Enzyme Activity in Pregnant Women Exposed to Methylmercury. Antioxidants (Basel) 2022; 11:2291. [PMID: 36421477 PMCID: PMC9687717 DOI: 10.3390/antiox11112291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 04/26/2024] Open
Abstract
Selenium (Se) is a micronutrient with essential physiological functions achieved through the production of selenoproteins. Adequate Se intake has health benefits and reduces mercury (Hg) toxicity, which is important due to its neurotoxicity. This study determined the Se status and redox enzyme, including selenoproteins', activity in pregnant women highly exposed to Hg (between 1 to 54 µg Hg/L blood) via fish consumption. A cross-sectional study enrolling 513 women between the first and third trimester of pregnancy from Madeira, Portugal was conducted, encompassing collection of blood and plasma samples. Samples were analyzed for total Se and Hg levels in whole blood and plasma, and plasma activity of redox-active proteins, such as glutathione peroxidase (GPx), thioredoxin reductase (TrxR) and thioredoxin (Trx). Enzyme activities were related to Se and Hg levels in blood. Se levels in whole blood (65.0 ± 13.1 µg/L) indicated this population had a sub-optimal Se status, which translated to low plasma GPx activity (69.7 ± 28.4 U/L). The activity of TrxR (12.3 ± 5.60 ng/mL) was not affected by the low Se levels. On the other hand, the decrease in Trx activity with an increase in Hg might be a good indicator to prevent fetal susceptibility.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, 2829-511 Monte de Caparica, Portugal
| | - Luís Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Cássia Barboza
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Eduarda Mendes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Afonso Cavaco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
7
|
Nobre P, Cabral MDF, Costa J, Castro-Caldas M, Carvalho C, Branco V. In Vitro Assessment of the Efficacy of a Macrocyclic Chelator in Reversing Methylmercury Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234817. [PMID: 31801208 PMCID: PMC6926914 DOI: 10.3390/ijerph16234817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
Methylmercury (MeHg) is a highly neurotoxic compound to which human populations are exposed via fish consumption. Once in cells, MeHg actively binds thiols and selenols, interfering with the activity of redox enzymes such as thioredoxin (Trx) and the selenoenzyme thioredoxin reductase (TrxR) which integrate the thioredoxin system. In fact, it has been shown that inhibition of this system by MeHg is a critical step in the unfolding of cell death. Current clinical approaches to mitigate the toxicity of MeHg rely on the use of chelators, such as meso-2,3-dimercaptosuccinic acid (DMSA) which largely replaced British anti-Lewisite or 2,3-dimercapto-1-propanol (BAL) as the prime choice. However, therapeutic efficacy is limited and therefore new therapeutic options are necessary. In this work, we evaluated the efficacy of a macrocyclic chelator, 1-thia-4,7,10,13-tetraazacyclopentadecane ([15]aneN4S), in preventing MeHg toxicity, namely by looking at the effects over relevant molecular targets, i.e., the thioredoxin system, using both purified enzyme solutions and cell experiments with human neuroblastoma cells (SH-SY5Y). Results showed that [15]aneN4S had a similar efficacy to DMSA and BAL in reversing the inhibition of MeHg over purified TrxR and Trx by looking at both the 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) reduction assay and insulin reduction capability. In experiments with cells, none of the chelating agents could reverse the inhibition of TrxR by MeHg, which corroborates the high affinity of MeHg to the selenol in TrxR active site. [15]aneN4S and BAL, unlike DMSA, could prevent inhibition of Trx, which allows the maintenance of downstream functions, although BAL showed higher toxicity to cells. Overall these findings highlight the potential of using [15]aneN4S in the treatment of MeHg poisoning and encourage further studies, namely in vivo.
Collapse
Affiliation(s)
- Paula Nobre
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (P.N.); (M.d.F.C.); (J.C.); (M.C.-C.); (C.C.)
| | - Maria de Fátima Cabral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (P.N.); (M.d.F.C.); (J.C.); (M.C.-C.); (C.C.)
| | - Judite Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (P.N.); (M.d.F.C.); (J.C.); (M.C.-C.); (C.C.)
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (P.N.); (M.d.F.C.); (J.C.); (M.C.-C.); (C.C.)
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (P.N.); (M.d.F.C.); (J.C.); (M.C.-C.); (C.C.)
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (P.N.); (M.d.F.C.); (J.C.); (M.C.-C.); (C.C.)
- Correspondence: ; Tel.:+351-217-946-400
| |
Collapse
|