1
|
Mao W, Qu J, Liu H, Guo R, Liao K, Wu S, Hangbiao J, Hu Z. Associations between urinary concentrations of benzothiazole, benzotriazole, and their derivatives and lung cancer: A nested case-control study. ENVIRONMENTAL RESEARCH 2024; 251:118750. [PMID: 38522739 DOI: 10.1016/j.envres.2024.118750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Benzothiazole (BTH), benzotriazole (BTR), and their respective derivatives (BTHs and BTRs) are emerging environmental pollutants with widespread human exposure and oncogenic potential. Studies have demonstrated adverse effects of exposure to certain BTHs and BTRs on the respiratory system. However, no study has examined the associations between exposure to BTHs and BTRs and lung cancer risk. We aimed to examine the associations between urinary concentrations of BTHs and BTRs and the risk of lung cancer in the general population from Quzhou, China. We conducted a nested case-control study in an ongoing prospective Quzhou Environmental Exposure and Human Health (QEEHH) cohort, involving 20, 694 participants who provided urine samples during April 2019-July 2020. With monthly follow-up until November 2022, 212 lung cancer cases were recruited and 1:1 matched with healthy controls based on age and sex. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer risk associated with urinary BTHs and BTRs concentrations using conditional logistic regression models after controlling for potential covariates. We also examined effect modification by several covariates, including sex, socioeconomic status, smoking status, alcohol consumption, and dietary habit. Creatinine-corrected urinary BTH and 2-hydroxy-benzothiazole (2-OH-BTH) levels were significantly associated with the risk of lung cancer, after adjusting for a variety of covariates. Participants in the highest quartile of BTH had a 95% higher risk of lung cancer, compared with those in the lowest quartile (adjusted OR = 1.95, 95% CI: 1.08-3.49; p for trend = 0.01). Participants with higher levels of urinary 2-OH-BTH had an 83% higher risk of lung cancer than those with lower levels (adjusted OR = 1.83, 95% CI: 1.16-2.88; p for trend = 0.01). Exposure to elevated levels of BTH and 2-OH-BTH may be associated with an increased risk of lung cancer. These associations were not modified by socio-demographic characteristics.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Jin Hangbiao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
2
|
Saez-Atienzar S, Masliah E. Cellular senescence and Alzheimer disease: the egg and the chicken scenario. Nat Rev Neurosci 2020; 21:433-444. [PMID: 32601397 DOI: 10.1038/s41583-020-0325-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Abstract
Globally, 50 million people live with dementia, with Alzheimer disease (AD) being responsible for two-thirds of the total cases. As ageing is the main risk factor for dementia-related neurodegeneration, changes in the timing or nature of the cellular hallmarks of normal ageing might be key to understanding the events that convert normal ageing into neurodegeneration. Cellular senescence is a candidate mechanism that might be important for this conversion. Under persistent stress, as occurs in ageing, both postmitotic cells - including neurons - and proliferative cells - such as astrocytes and microglia, among others - can engender a state of chronic cellular senescence that is characterized by the secretion of pro-inflammatory molecules that promote the functional decline of tissues and organs. Ablation of senescent cells has been postulated as a promising therapeutic venue to target the ageing phenotype and, thus, prevent or mitigate ageing-related diseases. However, owing to a lack of evidence, it is not possible to label cellular senescence as a cause or a consequence of neurodegeneration. This Review examines cellular senescence in the context of ageing and AD, and discusses which of the processes - cellular senescence or AD - might come first.
Collapse
Affiliation(s)
- Sara Saez-Atienzar
- Neuromuscular Disease Research Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA. .,Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
el Dareer SM, Kalin JR, Tillery KF, Hill DL, Barnett JW. Disposition of 2-mercaptobenzothiazole and 2-mercaptobenzothiazole disulfide in rats dosed intravenously, orally, and topically and in guinea pigs dosed topically. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1989; 27:65-84. [PMID: 2724369 DOI: 10.1080/15287398909531279] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To determine the metabolic disposition of [14C]-2-mercaptobenzothiazole (MBT) and [14C]-2-mercaptobenzothiazole disulfide (MBTS), male and female rats were dosed topically. Topical doses were 36.1 micrograms/animal for [14C]MBT and 33.6 micrograms/animal for [14C]MBTS. Although more MBT passed through the skin than MBTS and although, relative to rats, guinea pigs absorbed a greater percentage of the dose (33.4% compared to 16.1-17.5% of the MBT and 12.2% compared to 5.94-7.87% for MBTS), the disposition of radioactivity derived from the two compounds was similar. Washing of the skin removed more of the radioactivity from guinea pigs than from rats. For both sexes of rats dosed intravenously with [14C]MBT (0.602 mg/kg) or [14C]MBTS (0.571 mg/kg), disposition of the compounds was similar. In 72 h, 90.9-101% of the dose appeared in the urine and 3.79-15.1% in the feces. At this time, a small portion of the administered radioactivity (1.52-1.96% of the dose) remained associated with erythrocytes. Oral dosing of rats for 14 d with unlabeled MBT (0.510 mg/kg.d) prior to a single dose of [14C]MBT (0.503 mg/kg) or with unlabeled MBTS (0.521 mg/kg.d) prior to a single dose of [14C]MBTS (0.730 mg/kg). For both sexes, disposition of the compounds was similar. At 96 h after dosing, a small portion of the administered radioactivity (1.20-1.69% of the dose) remained associated with erythrocytes, most of which was bound to the membranes. For both compounds and sexes, 60.8-101% of the radioactivity administered appeared in the urine and 3.46-9.99% in the feces in 96 h. At the time, only trace amounts of radioactivity remained in tissues other than blood. Of these tissues, thyroid contained the highest concentration. In the urine, there was a detectable MBT or MBTS, but there were two metabolites, one of which was identified as a thioglucuronide derivative of MBT. The other was possibly a sulfonic acid derivative of MBT. In conclusion, there were similarities in absorption, distribution, and metabolism of [14C]MBT and [14C]MBTS in rats and in guinea pigs, indicating that [14C]MBTS was readily converted to [14C]MBT.
Collapse
Affiliation(s)
- S M el Dareer
- Southern Research Institute, Birmingham, Alabama 35255-3505
| | | | | | | | | |
Collapse
|