1
|
Di Giacomo C, Malfa GA, Tomasello B, Bianchi S, Acquaviva R. Natural Compounds and Glutathione: Beyond Mere Antioxidants. Antioxidants (Basel) 2023; 12:1445. [PMID: 37507985 PMCID: PMC10376414 DOI: 10.3390/antiox12071445] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The tripeptide glutathione plays important roles in many cell processes, including differentiation, proliferation, and apoptosis; in fact, disorders in glutathione homeostasis are involved both in the etiology and in the progression of several human diseases, including cancer. Natural compounds have been found to modulate glutathione levels and function beyond their role as mere antioxidants. For example, certain compounds can upregulate the expression of glutathione-related enzymes, increase the availability of cysteine, the limiting amino acid for glutathione synthesis, or directly interact with glutathione and modulate its function. These compounds may have therapeutic potential in a variety of disease states where glutathione dysregulation is a contributing factor. On the other hand, flavonoids' potential to deplete glutathione levels could be significant for cancer treatment. Overall, while natural compounds may have potential therapeutic and/or preventive properties and may be able to increase glutathione levels, more research is needed to fully understand their mechanisms of action and their potential benefits for the prevention and treatment of several diseases. In this review, particular emphasis will be placed on phytochemical compounds belonging to the class of polyphenols, terpenoids, and glucosinolates that have an impact on glutathione-related processes, both in physiological and pathological conditions. These classes of secondary metabolites represent the most food-derived bioactive compounds that have been intensively explored and studied in the last few decades.
Collapse
Affiliation(s)
- Claudia Di Giacomo
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Antonio Malfa
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Simone Bianchi
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rosaria Acquaviva
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Research Centre on Nutraceuticals and Health Products (CERNUT), University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
2
|
Šadibolová M, Juvonen RO, Auriola S, Boušová I. In vitro metabolism of helenalin and its inhibitory effect on human cytochrome P450 activity. Arch Toxicol 2022; 96:793-808. [PMID: 34989853 DOI: 10.1007/s00204-021-03218-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Sesquiterpene lactone helenalin is used as an antiphlogistic in European and Chinese folk medicine. The pharmacological activities of helenalin have been extensively investigated, yet insufficient information exists about its metabolic properties. The objectives of the present study were (1) to investigate the in vitro NADPH-dependent metabolism of helenalin (5 and 100 µM) using human and rat liver microsomes and liver cytosol, (2) to elucidate the role of human cytochrome P450 (CYP) enzymes in its oxidative metabolism, and (3) to study the inhibition of human CYPs by helenalin. Five oxidative metabolites were detected in NADPH-dependent human and rat liver microsomal incubations, while two reduced metabolites were detected only in NADPH-dependent human microsomal and cytosolic incubations. In human liver microsomes, the main oxidative metabolite was 14-hydroxyhelenalin, and in rat liver microsomes 9-hydroxyhelenalin. The overall oxidation of helenalin was several times more efficient in rat than in human liver microsomes. In humans, CYP3A4 and CYP3A5 followed by CYP2B6 were the main enzymes responsible for the hepatic metabolism of helenalin. The extrahepatic CYP2A13 oxidized helenalin most efficiently among CYP enzymes, possessing the Km value of 0.6 µM. Helenalin inhibited CYP3A4 (IC50 = 18.7 µM) and CYP3A5 (IC50 = 62.6 µM), and acted as a mechanism-based inhibitor of CYP2A13 (IC50 = 1.1 µM, KI = 6.7 µM, and kinact = 0.58 ln(%)/min). It may be concluded that the metabolism of helenalin differs between rats and humans, in the latter its oxidation is catalyzed by hepatic CYP2B6, CYP3A4, CYP3A5, and CYP3A7, and extrahepatic CYP2A13.
Collapse
Affiliation(s)
- Michaela Šadibolová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | - Risto O Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Quan NV, Dang Xuan T, Teschke R. Potential Hepatotoxins Found in Herbal Medicinal Products: A Systematic Review. Int J Mol Sci 2020; 21:E5011. [PMID: 32708570 PMCID: PMC7404040 DOI: 10.3390/ijms21145011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
The risk of liver injury associated with the use of herbal medicinal products (HMPs) is well known among physicians caring for patients under a HMP therapy, as documented in case reports or case series and evidenced by using the Roussel Uclaf Causality Assessment Method (RUCAM) to verify a causal relationship. In many cases, however, the quality of HMPs has rarely been considered regarding potential culprits such as contaminants and toxins possibly incriminated as causes for the liver injury. This review aims to comprehensively assemble details of tentative hepatotoxic contaminants and toxins found in HMPs. Based on the origin, harmful agents may be divided according two main sources, namely the phyto-hepatotoxin and the nonphyto-hepatotoxin groups. More specifically, phyto-hepatotoxins are phytochemicals or their metabolites naturally produced by plants or internally in response to plant stress conditions. In contrast, nonphyto-hepatotoxic elements may include contaminants or adulterants occurring during collection, processing and production, are the result of accumulation of toxic heavy metals by the plant itself due to soil pollutions, or represent mycotoxins, herbicidal and pesticidal residues. The phyto-hepatotoxins detected in HMPs are classified into eight major groups consisting of volatile compounds, phytotoxic proteins, glycosides, terpenoid lactones, terpenoids, alkaloids, anthraquinones, and phenolic acids. Nonphyto-hepatotoxins including metals, mycotoxins, and pesticidal and herbicidal residues and tentative mechanisms of toxicity are discussed. In conclusion, although a variety of potential toxic substances may enter the human body through HMP use, the ability of these toxins to trigger human liver injury remains largely unclear.
Collapse
Affiliation(s)
- Nguyen Van Quan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (N.V.Q.); (T.D.X.)
| | - Tran Dang Xuan
- Transdisciplinary Science and Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8529, Japan; (N.V.Q.); (T.D.X.)
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 63450 Hanau, Germany
| |
Collapse
|
4
|
He S, Zhang C, Zhou P, Zhang X, Ye T, Wang R, Sun G, Sun X. Herb-Induced Liver Injury: Phylogenetic Relationship, Structure-Toxicity Relationship, and Herb-Ingredient Network Analysis. Int J Mol Sci 2019; 20:ijms20153633. [PMID: 31349548 PMCID: PMC6695972 DOI: 10.3390/ijms20153633] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/08/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, hundreds of herbal products with potential hepatotoxicity were available in the literature. A comprehensive summary and analysis focused on these potential hepatotoxic herbal products may assist in understanding herb-induced liver injury (HILI). In this work, we collected 335 hepatotoxic medicinal plants, 296 hepatotoxic ingredients, and 584 hepatoprotective ingredients through a systematic literature retrieval. Then we analyzed these data from the perspectives of phylogenetic relationship and structure-toxicity relationship. Phylogenetic analysis indicated that hepatotoxic medicinal plants tended to have a closer taxonomic relationship. By investigating the structures of the hepatotoxic ingredients, we found that alkaloids and terpenoids were the two major groups of hepatotoxicity. We also identified eight major skeletons of hepatotoxicity and reviewed their hepatotoxic mechanisms. Additionally, 15 structural alerts (SAs) for hepatotoxicity were identified based on SARpy software. These SAs will help to estimate the hepatotoxic risk of ingredients from herbs. Finally, a herb-ingredient network was constructed by integrating multiple datasets, which will assist to identify the hepatotoxic ingredients of herb/herb-formula quickly. In summary, a systemic analysis focused on HILI was conducted which will not only assist to identify the toxic molecular basis of hepatotoxic herbs but also contribute to decipher the mechanisms of HILI.
Collapse
Affiliation(s)
- Shuaibing He
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ping Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Tianyuan Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ruiying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Drogosz J, Janecka A. Helenalin - A Sesquiterpene Lactone with Multidirectional Activity. Curr Drug Targets 2019; 20:444-452. [DOI: 10.2174/1389450119666181012125230] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
Abstract
Sesquiterpene lactones, secondary metabolites of plants, present in a large number of species
mostly from the Asteracea family, are used in the traditional medicine of many countries for the
treatment of various pathological conditions. They exert a broad range of activities, including antiinflammatory,
anti-bacterial and anti-cancer properties. The best-known sesquiterpene lactones which
are already used as drugs or are used in clinical trials are artemisinin, thapsigargin and parthenolide.
Yet another sesquiterpene lactone, helenalin, an active component of Arnica montana, known for its
strong anti-inflammatory activity, has been used for centuries in folk medicine to treat minor injuries.
Unfortunately, helenalin’s ability to cause allergic reactions and its toxicity to healthy tissues prevented
so far the development of this sesquiterpene lactone as an anticancer or anti-inflammatory drug.
Recently, the new interest in the biological properties, as well as in the synthesis of helenalin analogs
has been observed. This review describes helenalin's major biological activities, molecular mechanisms
of action, its toxicity and potential for further research.
Collapse
Affiliation(s)
- Joanna Drogosz
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Zárybnický T, Boušová I, Ambrož M, Skálová L. Hepatotoxicity of monoterpenes and sesquiterpenes. Arch Toxicol 2017; 92:1-13. [DOI: 10.1007/s00204-017-2062-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022]
|
7
|
A sensitive sensor cell line for the detection of oxidative stress responses in cultured human keratinocytes. SENSORS 2014; 14:11293-307. [PMID: 24967604 PMCID: PMC4168474 DOI: 10.3390/s140711293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/16/2022]
Abstract
In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 µM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ~300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 µM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (µTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings.
Collapse
|