1
|
Khessairi A, Fhoula I, Jaouani A, Turki Y, Cherif A, Boudabous A, Hassen A, Ouzari H. Pentachlorophenol degradation by Janibacter sp., a new actinobacterium isolated from saline sediment of arid land. BIOMED RESEARCH INTERNATIONAL 2014; 2014:296472. [PMID: 25313357 PMCID: PMC4182692 DOI: 10.1155/2014/296472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/17/2014] [Indexed: 11/17/2022]
Abstract
Many pentachlorophenol- (PCP-) contaminated environments are characterized by low or elevated temperatures, acidic or alkaline pH, and high salt concentrations. PCP-degrading microorganisms, adapted to grow and prosper in these environments, play an important role in the biological treatment of polluted extreme habitats. A PCP-degrading bacterium was isolated and characterized from arid and saline soil in southern Tunisia and was enriched in mineral salts medium supplemented with PCP as source of carbon and energy. Based on 16S rRNA coding gene sequence analysis, the strain FAS23 was identified as Janibacter sp. As revealed by high performance liquid chromatography (HPLC) analysis, FAS23 strain was found to be efficient for PCP removal in the presence of 1% of glucose. The conditions of growth and PCP removal by FAS23 strain were found to be optimal in neutral pH and at a temperature of 30 °C. Moreover, this strain was found to be halotolerant at a range of 1-10% of NaCl and able to degrade PCP at a concentration up to 300 mg/L, while the addition of nonionic surfactant (Tween 80) enhanced the PCP removal capacity.
Collapse
Affiliation(s)
- Amel Khessairi
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
- Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopôle Borj-Cédria, B.P. 273, 8020 Soliman, Tunisia
| | - Imene Fhoula
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Atef Jaouani
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Yousra Turki
- Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopôle Borj-Cédria, B.P. 273, 8020 Soliman, Tunisia
| | - Ameur Cherif
- Université de Manouba, Institut Supérieur de Biotechnologie de Sidi Thabet, LR11ES31 Laboratoire de Biotechnologie et Valorization des Bio-Geo Resources, Biotechpole de Sidi Thabet, 2020 Ariana, Tunisia
| | - Abdellatif Boudabous
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement et Recyclage des Eaux, Centre des Recherches et Technologie des Eaux (CERTE), Technopôle Borj-Cédria, B.P. 273, 8020 Soliman, Tunisia
| | - Hadda Ouzari
- Université Tunis El Manar, Faculté des Sciences de Tunis (FST), LR03ES03 Laboratoire de Microorganisme et Biomolécules Actives, Campus Universitaire, 2092 Tunis, Tunisia
| |
Collapse
|
2
|
Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds: an overview. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2007; 85:496-512. [PMID: 17703873 DOI: 10.1016/j.jenvman.2007.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 06/18/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
Nitro-aromatic compounds are produced by incomplete combustion of fossil fuel or nitration reactions and are used as chemical feedstock for synthesis of explosives, pesticides, herbicides, dyes, pharmaceuticals, etc. The indiscriminate use of nitro-aromatics in the past due to wide applications has resulted in inexorable environmental pollution. Hence, nitro-aromatics are recognized as recalcitrant and given Hazardous Rating-3. Although several conventional pump and treat clean up methods are currently in use for the removal of nitro-aromatics, none has proved to be sustainable. Recently, remediation by biological systems has attracted worldwide attention to decontaminate nitro-aromatics polluted sources. The incredible versatility inherited in microbes has rendered these compounds as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or non-specific transformation of nitro-aromatics either by aerobic or anaerobic processes. Aerobic degradation of nitro-aromatics applies mainly to mono-, dinitro-derivatives and to some extent to poly-nitro-aromatics through oxygenation by: (i) monooxygenase, (ii) dioxygenase catalyzed reactions, (iii) Meisenheimer complex formation, and (iv) partial reduction of aromatic ring. Under anaerobic conditions, nitro-aromatics are reduced to amino-aromatics to facilitate complete mineralization. The nitro-aromatic explosives from contaminated sediments are effectively degraded at field scale using in situ bioremediation strategies, while ex situ techniques using whole cell/enzyme(s) immobilized on a suitable matrix/support are gaining acceptance for decontamination of nitrophenolic pesticides from soils at high chemical loading rates. Presently, the qualitative and quantitative performance of biological approaches of remediation is undergoing improvement due to: (i) knowledge of catabolic pathways of degradation, (ii) optimization of various parameters for accelerated degradation, and (iii) design of microbe(s) through molecular biology tools, capable of detoxifying nitro-aromatic pollutants. Among them, degradative plasmids have provided a major handle in construction of recombinant strains. Although recombinants designed for high performance seem to provide a ray of hope, their true assessment under field conditions is required to address ecological considerations for sustainable bioremediation.
Collapse
Affiliation(s)
- Meenal Kulkarni
- School of Life Sciences, North Maharashtra University, P.B. No. 80, Jalgaon 425 001, Maharashtra, India
| | | |
Collapse
|
3
|
Raina V, Suar M, Singh A, Prakash O, Dadhwal M, Gupta SK, Dogra C, Lawlor K, Lal S, van der Meer JR, Holliger C, Lal R. Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation 2007; 19:27-40. [PMID: 17387620 DOI: 10.1007/s10532-007-9112-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 02/28/2007] [Indexed: 11/30/2022]
Abstract
Soil pollution with hexachlorocyclohexane (HCH) has caused serious environmental problems. Here we describe the targeted degradation of all HCH isomers by applying the aerobic bacterium Sphingobium indicum B90A. In particular, we examined possibilities for large-scale cultivation of strain B90A, tested immobilization, storage and inoculation procedures, and determined the survival and HCH-degradation activity of inoculated cells in soil. Optimal growth of strain B90A was achieved in glucose-containing mineral medium and up to 65% culturability could be maintained after 60 days storage at 30 degrees C by mixing cells with sterile dry corncob powder. B90A biomass produced in water supplemented with sugarcane molasses and immobilized on corncob powder retained 15-20% culturability after 30 days storage at 30 degrees C, whereas full culturability was maintained when cells were stored frozen at -20 degrees C. On the contrary, cells stored on corncob degraded gamma-HCH faster than those that had been stored frozen, with between 15 and 85% of gamma-HCH disappearance in microcosms within 20 h at 30 degrees C. Soil microcosm tests at 25 degrees C confirmed complete mineralization of [(14)C]-gamma-HCH by corncob-immobilized strain B90A. Experiments conducted in small pits and at an HCH-contaminated agricultural site resulted in between 85 and 95% HCH degradation by strain B90A applied via corncob, depending on the type of HCH isomer and even at residual HCH concentrations. Up to 20% of the inoculated B90A cells survived under field conditions after 8 days and could be traced among other soil microorganisms by a combination of natural antibiotic resistance properties, unique pigmentation and PCR amplification of the linA genes. Neither the addition of corncob nor of corncob immobilized B90A did measurably change the microbial community structure as determined by T-RFLP analysis. Overall, these results indicate that on-site aerobic bioremediation of HCH exploiting the biodegradation activity of S. indicum B90A cells stored on corncob powder is a promising technology.
Collapse
Affiliation(s)
- Vishakha Raina
- Department of Zoology, University of Delhi, Delhi 110007, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Jorquera M, Yamaguchi N, Tani K, Nasu M. A Combination of Direct Viable Counting, Fluorescence in situ Hybridization, and Green Fluorescent Protein Gene Expression for Estimating Plasmid Transfer at the Single Cell Level. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Milko Jorquera
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Katsuji Tani
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masao Nasu
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
5
|
Errampalli D, Tresse O, Lee H, Trevors JT. Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp. G21 encapsulated cells. FEMS Microbiol Ecol 1999; 30:229-236. [PMID: 10525179 DOI: 10.1111/j.1574-6941.1999.tb00651.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Moraxella sp. G21 cells marked with the green fluorescent protein (gfp) survived in kappa-carrageenan beads and as free cells for a month after inoculation into autoclaved soil and non-sterile soil contaminated with p-nitrophenol (PNP). Similar [U-(14)C]PNP mineralization values were produced by encapsulated Moraxella sp. G21 cells and as free cells (53 and 60% mineralization). There was no significant difference between cell survival and [U-(14)C]PNP mineralization activity in soil by the rifampicin-resistant Moraxella sp. mental strain and Moraxella sp. G21. The ability of encapsulated Moraxella sp. G21 cells to survive, retain their green fluorescence and mineralize [U-(14)C]PNP suggests that the GFP-marked strain encapsulated in kappa-carrageenan may be useful for bioremediation of toxic chemicals in soil.
Collapse
Affiliation(s)
- D Errampalli
- Agriculture and Agri-Food Canada, Crops and Livestock Research Centre, P.O. Box 1210, 440 University Avenue, Charlottetown, P.E.I., Canada
| | | | | | | |
Collapse
|
6
|
Errampalli D, Leung K, Cassidy MB, Kostrzynska M, Blears M, Lee H, Trevors JT. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J Microbiol Methods 1999; 35:187-99. [PMID: 10333070 DOI: 10.1016/s0167-7012(99)00024-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this review, we examine numerous applications of the green fluorescent protein (GFP) marker gene in environmental microbiology research. The GFP and its variants are reviewed and applications in plant-microbe interactions, biofilms, biodegradation, bacterial-protozoan interactions, gene transfer, and biosensors are discussed. Methods for detecting GFP-marked cells are also examined. The GFP is a useful marker in environmental microorganisms, allowing new research that will increase our understanding of microorganisms in the environment.
Collapse
Affiliation(s)
- D Errampalli
- Agriculture and Agri-Food Canada, Charlottetown, PEI
| | | | | | | | | | | | | |
Collapse
|
7
|
Kostrzynska M, Sankey M, Haack E, Power C, Aldom JE, Chagla AH, Unger S, Palmateer G, Lee H, Trevors JT, De Grandis SA. Three sample preparation protocols for polymerase chain reaction based detection of Cryptosporidium parvum in environmental samples. J Microbiol Methods 1999; 35:65-71. [PMID: 10076632 DOI: 10.1016/s0167-7012(98)00106-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cryptosporidium parvum is a protozoan parasite responsible for an increasing number of outbreaks of gastrointestinal illness worldwide. In this report, we describe development of sample preparation protocols for polymerase chain reaction (PCR)-based detection of C. parvum in fecal material and environmental water samples. Two of these methods were found adequate for isolation of Cryptosporidium DNA from filtered water pellet suspensions. The first involved several filtration steps, immunomagnetic separation and freeze-thaw cycles. The second method involved filtration, addition of EnviroAmp lysis reagent, freeze-thaw cycles and precipitation of the DNA with isopropanol. Using nested PCR, we detected 100 oocysts/ml of filtered water pellet suspension, with either of the above sample preparation procedures. Nested PCR increased sensitivity of the assay by two to three orders of magnitude as compared to the primary PCR. The detection limit for seeded fecal samples was 10-fold higher than for filtered environmental water pellet suspension. Nested PCR results showed 62.4 and 91.1% correlation with immunofluorescence assay (IFA) for fecal samples and filtered environmental water pellet suspensions, respectively. This correlation decreased to 47.2% and 44.4%, respectively, when only IFA positive samples were analyzed. However, in fecal samples contaminated with a high number (> 10(5)/g) of C. parvum oocysts, this correlation was 100%.
Collapse
Affiliation(s)
- M Kostrzynska
- Laboratory Services Division, University of Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rodriguez TE, Paustenbach DJ. Risk Assessment in Environmental Remediation. Toxicology 1999. [DOI: 10.1016/b978-012473270-4/50103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Errampalli D, Okamura H, Lee H, Trevors JT, Elsas J. Green fluorescent protein as a marker to monitor survival of phenanthrene-mineralizing Pseudomonas sp. UG14Gr in creosote-contaminated soil. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00504.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
10
|
Chung E, Aldom J, Chagla A, Kostrzynska M, Lee H, Palmateer G, Trevors J, Unger S, De Grandis S. Detection of Cryptosporidium parvum oocysts in municipal water samples by the polymerase chain reaction. J Microbiol Methods 1998. [DOI: 10.1016/s0167-7012(98)00050-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Tresse O, Errampalli D, Kostrzynska M, Leung KT, Lee H, Trevors JT, van Elsas JD. Green fluorescent protein as a visual marker in a p-nitrophenol degrading Moraxella sp. FEMS Microbiol Lett 1998; 164:187-93. [PMID: 9675864 DOI: 10.1111/j.1574-6968.1998.tb13084.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The green fluorescent protein gene (gfp) was introduced into a p-nitrophenol-metabolizing strain of Moraxella sp. by chromosomal integration. The gfp-marked transformants, designated Moraxella sp. strains G21 and G25, exhibited green fluorescence under UV light. Molecular characterization by PCR and Southern hybridization showed the presence of gfp in both transformants. Both transformants and the parent strain degraded 720 microM of p-nitrophenol with nitrite release within 4 h after inoculation in minimal medium supplemented with yeast extract. Transformants degraded up to 1440 microM p-nitrophenol and mineralized about 60% of 720 microM p-nitrophenol, both in broth and in soil, to the same extent as the parent strain. Insertion of gfp did not adversely affect the expression of p-nitrophenol-degrading genes in the transformants. Survival studies indicated that individual green fluorescent colonies of transformants can be detected up to 2 weeks after inoculation in soil. These marked strains could be of value in studies on microbial survival in the environment.
Collapse
Affiliation(s)
- O Tresse
- Department of Environmental Biology, University of Guelph, Ont., Canada
| | | | | | | | | | | | | |
Collapse
|