1
|
Ferencz B, Török K, Pipek O, Fillinger J, Csende K, Lantos A, Černeková R, Mitták M, Škarda J, Delongová P, Megyesfalvi E, Schelch K, Lang C, Solta A, Boettiger K, Brcic L, Lindenmann J, Rényi-Vámos F, Aigner C, Berta J, Megyesfalvi Z, Döme B. Expression patterns of novel immunotherapy targets in intermediate- and high-grade lung neuroendocrine neoplasms. Cancer Immunol Immunother 2024; 73:114. [PMID: 38693435 PMCID: PMC11063022 DOI: 10.1007/s00262-024-03704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Advancements in immunotherapeutic approaches only had a modest impact on the therapy of lung neuroendocrine neoplasms (LNENs). Our multicenter study aimed to investigate the expression patterns of novel immunotherapy targets in intermediate- and high-grade LNENs. METHODS The expressions of V-domain Ig suppressor of T cell activation (VISTA), OX40L, Glucocorticoid-induced TNF receptor (GITR), and T cell immunoglobulin and mucin domain 3 (TIM3) proteins were measured by immunohistochemistry in surgically resected tumor samples of 26 atypical carcinoid (AC), 49 large cell neuroendocrine lung cancer (LCNEC), and 66 small cell lung cancer (SCLC) patients. Tumor and immune cells were separately scored. RESULTS Tumor cell TIM3 expression was the highest in ACs (p < 0.001), whereas elevated tumor cell GITR levels were characteristic for both ACs and SCLCs (p < 0.001 and p = 0.011, respectively). OX40L expression of tumor cells was considerably lower in ACs (vs. SCLCs; p < 0.001). Tumor cell VISTA expression was consistently low in LNENs, with no significant differences across histological subtypes. ACs were the least immunogenic tumors concerning immune cell abundance (p < 0.001). Immune cell VISTA and GITR expressions were also significantly lower in these intermediate-grade malignancies than in SCLCs or in LCNECs. Immune cell TIM3 and GITR expressions were associated with borderline prognostic significance in our multivariate model (p = 0.057 and p = 0.071, respectively). CONCLUSIONS LNEN subtypes have characteristic and widely divergent VISTA, OX40L, GITR, and TIM3 protein expressions. By shedding light on the different expression patterns of these immunotherapy targets, the current multicenter study provides support for the future implementation of novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Bence Ferencz
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Klára Török
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Orsolya Pipek
- Department of Physics of Complex Systems, Eotvos Lorand University, Budapest, Hungary
| | - János Fillinger
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Kristóf Csende
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
| | - András Lantos
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Radoslava Černeková
- Department of Pulmonary Diseases and Tuberculosis, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Marcel Mitták
- Surgical Clinic, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jozef Škarda
- Medical Faculty, Institute of Clinical and Molecular Pathology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Patricie Delongová
- Department of Pathology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Evelyn Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- Department of Clinical Pharmacology, National Institute of Oncology, Chest and Abdominal Tumors Chemotherapy "B", Budapest, Hungary
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Ferenc Rényi-Vámos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Balázs Döme
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Thoracic Surgery, Comprehensive Cancer Center Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Chang HC, Chen KY, Chang YL, Shih JY, Yu CJ. Lung adenocarcinoma with neuroendocrine differentiation: Molecular markers testing and treatment outcomes. J Formos Med Assoc 2022:S0929-6646(22)00450-8. [PMID: 36586785 DOI: 10.1016/j.jfma.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Among the histologic types of lung cancer, adenocarcinoma is the most common. Moreover, lung adenocarcinoma with neuroendocrine differentiation (LANED) is a rare histologic character. So far, the clinical significance remains unclear. MATERIAL AND METHODS We searched for the patients diagnosed with LANED from the electronic pathology database between January 2000 and June 2020 in a tertiary hospital. The tumor specimens were reviewed by a pathologist to confirm the diagnosis. EGFR mutation, ALK translocation, as well as programmed death ligand 1 (PD-L1) and rearranged during transfection (RET) expression were tested in the specimens of LANED. The clinical data were also collected and analyzed. RESULTS A total of 10 patients diagnosed with LANED were included. Most were male (80%) and ever smokers (70%). The median age was 71.5 years old. At diagnosis, most had tumors harboring no EGFR mutation (70%), negative ALK translocation (88.9%), and without PD-L1 expression (90%). All specimens tested by immunohistochemical staining for RET expression (n = 9) showed positive results. Among the 10 patients, five underwent operation (stage I, n = 4; stage II, n = 1). The patient with stage II disease had recurrence 11 months later. For patients with advanced stages (stage III, n = 1; stage IV, n = 4), the treatment modalities varied and the overall survival ranged from 11.0 to 46.7 months. CONCLUSION LANED might be associated with a high proportion of RET expression, whereas EGFR mutation, ALK alteration, and PD-L1 expression were uncommon. Further large-scale prospective studies on molecular testing profile and clinical significance of LANED are warranted.
Collapse
Affiliation(s)
- Hao-Chun Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hsin-Chu Branch, Biomedical Park Hospital, No. 2, Section 1, Shengyi Road, Zhubei City, Hsinchu County 302, Taiwan
| | - Kuan-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100225, Taiwan.
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Cancer Center and National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100225, Taiwan
| | - Jin-Yuan Shih
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, No. 7, Chung-Shan South Road, Taipei 100225, Taiwan
| | - Chong-Jen Yu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hsin-Chu Branch, Biomedical Park Hospital, No. 2, Section 1, Shengyi Road, Zhubei City, Hsinchu County 302, Taiwan
| |
Collapse
|
3
|
Keyhanian K, Phillips WJ, Yeung BS, Gomes M, Lo B, Sekhon HS. Neuroendocrine differentiation distinguishes basaloid variant of lung squamous cell carcinoma. Diagn Pathol 2022; 17:46. [PMID: 35538551 PMCID: PMC9088121 DOI: 10.1186/s13000-022-01223-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background Neuroendocrine (NE) differentiation is widely studied in non-small cell lung carcinomas (NSCLC) however, its significance remains unclear in basaloid squamous cell carcinomas (B-SqCC). This study aims to assess the extent of NE differentiation in B-SqCC and characterize the underlying molecular process. Methods This study evaluated resected B-SqCC, small cell lung cancer (SCLC) and poorly differentiated SqCC (PD-SqCC) from 2005 to 2020 at the Ottawa Hospital. Samples were subject to pathological review, immunohistochemistry (IHC) and survival analysis. Gene expression analysis was performed on B-SqCC samples exhibiting NE+ and NE- regions (paired samples) to identify differentially expressed genes (DEGs). These DEGs were subsequently validated in unpaired B-SqCC and TCGA samples. Results B-SqCC cases were more likely to exhibit nuclear molding, resetting and peripheral palisading than PD-SqCC. B-SqCC were also more likely to demonstrate NE differentiation compared to PD-SqCC (p = 0.006). Pure basaloid squamous cell carcinoma (PB-SqCC) experienced poorer disease-free survival (HR = 3.12, p = 0.043) adjusted for stage. Molecular characterization of paired B-SqCC samples demonstrated DEGs implicated in NOTCH signaling, SCLC and pulmonary neuroendocrine differentiation. Hierarchical clustering using discovered DEGs in unpaired B-SqCC samples distinguished tumors based on NE status (p = 0.048). Likewise, clustering The Cancer Genome Atlas (TCGA) samples with DEGs distinguished B-SqCC from SqCC samples (p = 0.0094). Conclusion This study provides IHC and molecular evidence of significant NE-differentiation in B-SqCC and demonstrates their aggressive clinical behavior. These findings suggest that B-SqCC are biologically distinct from SqCC and share characteristics with SCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-022-01223-6.
Collapse
Affiliation(s)
- Kianoosh Keyhanian
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital/Eastern Ontario Regional Laboratory Association, Critical Care Wing, Rm 4220, Box 117, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - William J Phillips
- Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Department of Medicine, Univeristy of Ottawa, Faculty of Medicine, Ottawa, ON, K1H 8M5, Canada
| | - Benjamin S Yeung
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Marcio Gomes
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital/Eastern Ontario Regional Laboratory Association, Critical Care Wing, Rm 4220, Box 117, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Bryan Lo
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital/Eastern Ontario Regional Laboratory Association, Critical Care Wing, Rm 4220, Box 117, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Harmanjatinder S Sekhon
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital/Eastern Ontario Regional Laboratory Association, Critical Care Wing, Rm 4220, Box 117, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Pathology and Laboratory Medicine, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
5
|
Huang H, Liu Y, Ouyang X, Wang H, Zhang Y. Identification of a peptide targeting CD56. Immunobiology 2020; 225:151982. [PMID: 32747027 DOI: 10.1016/j.imbio.2020.151982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
Abstract
Neural cell adhesion molecule 1 (NCAM1/CD56) is expressed on immune cells, myoblasts, and malignant cells, and there is a growing demand for the genetic detection of CD56 and CD56-targeted therapy. In the present study, we developed a novel peptide ligand (designated Natein) that binds to human CD56 by using T7 phage display technology. Natein recognized the extracellular region of CD56 and could bind to natural killer (NK) cells and CD56-positive (CD56+) cancer cells. CD56+ cells enriched from human peripheral blood mononuclear cells (PBMCs) using biotinylated Natein-conjugated microbeads, similarly to CD56 antibody-isolated cells, demonstrated functional cytotoxicity against K562 cells. In addition, Natein could be used to stain CD56+ lymphoma cells in nasal-type extranodal NK/T-cell lymphoma tissues similarly to a CD56 antibody. These findings suggest that Natein has the potential to be alternative to CD56 antibody that could be used for peptide-based cell isolation and diagnosis.
Collapse
Affiliation(s)
- Hongxing Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Ying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaoming Ouyang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Hua Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
6
|
Tsai HK, Hornick JL, Vivero M. INSM1 expression in a subset of thoracic malignancies and small round cell tumors: rare potential pitfalls for small cell carcinoma. Mod Pathol 2020; 33:1571-1580. [PMID: 32203089 DOI: 10.1038/s41379-020-0517-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 01/25/2023]
Abstract
INSM1 is a diagnostic marker for neuroendocrine tumors originating in multiple anatomic sites. In the lung, INSM1 shows 76-97% sensitivity for neuroendocrine tumors overall. Our aim was to characterize INSM1 as a diagnostic marker for small cell carcinoma in the context of its epithelial, lymphoid, and mesenchymal morphologic mimics. Immunohistochemistry was performed on 231 tumors, including lung neuroendocrine tumors, nonneuroendocrine carcinomas of the thoracic cavity, diffuse large B-cell lymphomas, and small round cell sarcomas, using an anti-INSM1 mouse monoclonal antibody. Extent (0-100%) and intensity (1-3+) of nuclear INSM1 staining was multiplied in each case to calculate an H-score. Demographic and clinical information was obtained from the medical record. INSM1 had an overall sensitivity and specificity of 81.5% and 82.7% for small cell carcinoma, respectively, using a threshold established with a receiver operating characteristic curve. 40/48 (82.7%) small cell carcinomas were positive for INSM1, including 19/24 (79%) small cell carcinomas that were negative for chromogranin and synaptophysin. 5/5 carcinoids and 21/28 (75%) large cell neuroendocrine carcinomas showed INSM1 expression. Among nonneuroendocrine tumors, 7/38 (18%) lung adenocarcinomas, 2/17 (12%) lung squamous cell carcinomas, 4/10 (40%) thymic carcinomas, 4/12 (33%) adenoid cystic carcinomas, 1/19 (5%) diffuse large B-cell lymphomas, 4/11 (36%) alveolar rhabdomyosarcomas, and 4/23 (17%) Ewing sarcomas were positive for INSM1. No synovial sarcomas or desmoplastic small round cell tumors were positive. Weak, focal INSM1 expression alone is insufficient as a diagnostic marker for small cell carcinoma, but is sensitive and specific, easy to interpret in small biopsies, and makes a valuable addition to a diagnostic panel.
Collapse
Affiliation(s)
- Harrison K Tsai
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marina Vivero
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Li Q, Zhang CS, Zhang Y. Molecular aspects of prostate cancer with neuroendocrine differentiation. Chin J Cancer Res 2016; 28:122-9. [PMID: 27041934 DOI: 10.3978/j.issn.1000-9604.2016.01.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine differentiation (NED), which is not uncommon in prostate cancer, is increases in prostate cancer after androgen-deprivation therapy (ADT) and generally appears in castration-resistant prostate cancer (CRPC). Neuroendocrine cells, which are found in normal prostate tissue, are a small subset of cells and have unique function in regulating the growth of prostate cells. Prostate cancer with NED includes different types of tumor, including focal NED, pure neuroendocrine tumor or mixed neuroendocrine-adenocarcinoma. Although more and more studies are carried out on NED in prostate cancer, the molecular components that are involved in NED are still poorly elucidated. We review neuroendocrine cells in normal prostate tissue, NED in prostate cancer, terminology of NED and biomarkers used for detecting NED in routine pathological practice. Some recently reported molecular components which drive NED in prostate cancer are listed in the review.
Collapse
Affiliation(s)
- Qi Li
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Connie S Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yifen Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
8
|
Koo J, Dhall D. Problems with the diagnosis of metastatic neuroendocrine neoplasms. Which diagnostic criteria should we use to determine tumor origin and help guide therapy? Semin Diagn Pathol 2015; 32:456-68. [PMID: 26573790 DOI: 10.1053/j.semdp.2015.09.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroendocrine neoplasms (NENs) can often present with metastatic disease before the primary tumor is discovered. Metastatic lesions are generally classified as well differentiated and poorly differentiated for prognostic and therapeutic purposes. In addition, for well-differentiated neuroendocrine tumors (WDNETs), pathologists are expected to determine the site of origin, if not already known, and grade the tumors. However, it is often difficult for pathologists to provide this information with certainty without knowing the site of tumor origin, as different criteria have been proposed by WHO for classification of gastrointestinal and pulmonary NENs. In this review, we will discuss the current classification and grading schema of NENs and their impact on clinical care, the differential diagnosis of NENs, the use of immunohistochemical stains that help identify tumor site of origin, and a proposed approach for the diagnosis and classification of metastatic NENs.
Collapse
Affiliation(s)
- Jamie Koo
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|