1
|
Sarani M, Hamidian K, Barani M, Adeli‐Sardou M, Khonakdar HA. α-Fe 2 O 3 @Ag and Fe 3 O 4 @Ag Core-Shell Nanoparticles: Green Synthesis, Magnetic Properties and Cytotoxic Performance. ChemistryOpen 2023; 12:e202200250. [PMID: 37260410 PMCID: PMC10235882 DOI: 10.1002/open.202200250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/22/2023] [Indexed: 06/02/2023] Open
Abstract
This work provides the synthetic route for the arrangement of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell nanoparticles (NPs) with cytotoxic capabilities. The production of Fe3 O4 @Ag and α-Fe2 O3 @Ag core-shell NPs was facilitated utilizing S. persica bark extracts. The results of Powder X-ray Diffraction (PXRD), Ultraviolet-visible (UV-Vis) spectroscopy, Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray (EDX) analysis, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) supported the green synthesis and characterization of Fe3 O4 @Ag and α-Fe2 O3 @Ag NPs. The particle size was measured by the TEM analysis to be about 30 and 50 nm, respectively; while the results of FESEM showed that α-Fe2 O3 @Ag and Fe3 O4 @Ag particles contained multifaceted particles with a size of 50-60 nm and 20-25 nm, respectively. The outcomes of VSM were indicative of a saturation magnetization of 37 and 0.18 emu/g at room temperature, respectively. The potential cytotoxicity of the synthesized core-shell nanoparticles towards breast cancer (MCF-7) and human umbilical vein endothelial (HUVEC) cells was evaluated by an MTT assay. α-Fe2 O3 @Ag NPs were able to destroy 100 % of MCF-7 cell at doses above 80 μg/mL, and it was confirmed that Fe3 O4 @Ag NPs at a volume of 160 μg/mL can destroy 90 % of MCF-7 cells. Thus, the applicability of the prepared nanoparticles of these nanoparticles in biological and medical fields has been demonstrated.
Collapse
Affiliation(s)
- Mina Sarani
- Zabol Medicinal Plants Research CenterZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Khadijeh Hamidian
- Department of PharmaceuticsFaculty of PharmacyZabol University of Medical SciencesShahid Rajaei StreetZabolIran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
| | - Mahboubeh Adeli‐Sardou
- Herbal and Traditional Medicines Research CenterKerman University of Medical SciencesHaft-Bagh HighwayKermanIran
- Department of BiotechnologyInstitute of Science and High Technology and Environmental SciencesGraduate University of Advanced TechnologyThe end of Haft Bagh Alavi HighwayKermanIran
| | - Hossein Ali Khonakdar
- Department of Polymer ProcessingIran Polymer and Petrochemical InstituteKaraj HighwayTehranIran
| |
Collapse
|
2
|
Wang Y, Yang Y, Zheng X, Shi J, Zhong L, Duan X, Zhu Y. Application of iron oxide nanoparticles in the diagnosis and treatment of leukemia. Front Pharmacol 2023; 14:1177068. [PMID: 37063276 PMCID: PMC10097929 DOI: 10.3389/fphar.2023.1177068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Leukemia is a malignancy initiated by uncontrolled proliferation of hematopoietic stem cell from the B and T lineages, resulting in destruction of hematopoietic system. The conventional leukemia treatments induce severe toxic and a long series of unwanted side-effects which are caused by lack of specificity of anti-leukemic drugs. Recently, nanotechnology have shown tremendous application and clinical impact with respect to diagnosis and treatment of leukemia. According to considerable researches in the context of finding new nanotechnological platform, iron oxide nanoparticles have been gained increasing attention for the leukemia patients use. In this review, a short introduction of leukemia is described followed by the evaluation of the current approaches of iron oxide nanoparticles applied in the leukemia detection and treatment. The enormous advantages of iron oxide nanoparticles for leukemia have been discussed, which consist of the detection of magnetic resonance imaging (MRI) as efficient contrast agents, magnetic biosensors and targeted delivery of anti-leukemia drugs by coating different targeting moieties. In addition, this paper will briefly describe the application of iron oxide nanoparticles in the combined treatment of leukemia. Finally, the shortcomings of the current applications of iron-based nanoparticles in leukemia diagnosis and treatment will be discussed in particular.
Collapse
|
3
|
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022; 4:1030285. [PMID: 36407494 PMCID: PMC9666682 DOI: 10.3389/fgeed.2022.1030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 10/03/2023] Open
Abstract
Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.
Collapse
Affiliation(s)
- Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Somayeh Rezaei
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Krasteva DR, Ivanov YL, Chervenkov TG, Gabrovska KI, Godjevargova TI. CD34 + stem cell counting using labeled immobilized anti-CD34 antibody onto magnetic nanoparticles and EasyCounter BC image cytometer. Anal Biochem 2020; 610:113929. [PMID: 32866464 DOI: 10.1016/j.ab.2020.113929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/24/2020] [Accepted: 08/22/2020] [Indexed: 11/20/2022]
Abstract
The ability of immobilized conjugate anti-CD34+ monoclonal antibody-dR110 and free conjugate anti-CD45+ monoclonal antibody-ATTO620 to precisely enumerate CD34+ stem cells and CD45+ cells in apheresis samples were evaluated. The conjugates anti-CD34+ antibody-dR110 and anti-CD45+- antibody-ATTO620 were prepared. Functionalized magnetic nanoparticles (MNPs) were synthesized. The anti-CD34+ antibody-dR110 conjugate was immobilized on the modified MNPs using a carbodiimide method. The stem cell count in thawed apheresis samples was determined using the free and the immobilized conjugate anti-CD34+ antibody-dR110 on MNPs and an image cell counter EasyCounter BC. A higher stem cell count and more accurate results were obtained with the immobilized conjugate, because a separation and concentration of the stem cells bound to antibody-dR110 on MNPs by external magnet were performed. Coefficients of variation of CD34+ cell count in apheresis samples, determined by EasyCounter BC, were ranged from 5.5 to 6.9% and those of CD45+ cell count from 3.8 to 4.7%. The viability of CD34+ cells was high from 98.5 to 99.6%. It was found that correlation coefficient between the flow cytometer and automatic cell counter, using free anti-CD34+ antibody-dR110 was 0.94, and when using immobilized anti-CD34+antibody-dR110 on MNPs, the correlation coefficient was 0.97.
Collapse
Affiliation(s)
| | - Yavor L Ivanov
- Department Biotechnology, Prof. A. Zlatarov University, Burgas, Bulgaria
| | | | - Katya I Gabrovska
- Department Biotechnology, Prof. A. Zlatarov University, Burgas, Bulgaria
| | | |
Collapse
|
5
|
Taufiq A, Saputro RE, Susanto H, Hidayat N, Sunaryono S, Amrillah T, Wijaya HW, Mufti N, Simanjuntak FM. Synthesis of Fe 3O 4/Ag nanohybrid ferrofluids and their applications as antimicrobial and antifibrotic agents. Heliyon 2020; 6:e05813. [PMID: 33426329 PMCID: PMC7779699 DOI: 10.1016/j.heliyon.2020.e05813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/25/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
To date, the search for creating stable ferrofluids with excellent properties for biomedical application is one of the challenging scientific and practical investigations. In this study, novel Fe3O4/Ag nanohybrid ferrofluids from iron sand were synthesized using a double-layer method. The Fe3O4/Ag nanocomposites exhibited stable crystallite sizes of 11.8 12.1 nm and 36.8-37.2 nm for Fe3O4 and Ag, respectively. The lattice parameters of the spinel structure Fe3O4 and face-centered cubic Ag were respectively 8.344 Å and 4.091 Å. With increasing Ag amount, the crystallite phase of Ag in the nanocomposites increased from 40.2% to 77.2%. The XPS results confirmed that Fe3O4/Ag nanocomposites were successfully prepared, where Fe3O4 mixed well with Ag via strong ionic bonding. The FTIR results confirmed the presence of Fe3O4/Ag, oleic acid, and dimethyl sulfoxide as the filler, first layer, and second layer, respectively. The as-prepared ferrofluids exhibited superparamagnetic behavior, where the saturation magnetization decreased with increasing Ag content. The Fe3O4/Ag nanohybrid ferrofluids exhibited excellent antimicrobial performance against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Candida albicans. More importantly, the Fe3O4/Ag nanohybrid ferrofluids decreased the progression of liver fibrosis-related inflammation and fibrogenic activity on hepatic stellate cells.
Collapse
Affiliation(s)
- Ahmad Taufiq
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Rosy Eko Saputro
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Hendra Susanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Nurul Hidayat
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Sunaryono Sunaryono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Tahta Amrillah
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Husni Wahyu Wijaya
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Nandang Mufti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang, 65145, Indonesia
| | - Firman Mangasa Simanjuntak
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
6
|
|
7
|
Preparation, surface functionalization and application of Fe 3O 4 magnetic nanoparticles. Adv Colloid Interface Sci 2020; 281:102165. [PMID: 32361408 DOI: 10.1016/j.cis.2020.102165] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 11/23/2022]
Abstract
This paper reviews recent developments in the preparation, surface functionalization, and applications of Fe3O4 magnetic nanoparticles. Especially, it includes preparation methods (such as electrodeposition, polyol methods, etc.), organic materials (such as polymers, small molecules, surfactants, biomolecules, etc.) or inorganic materials (such as silica, metals, and metal oxidation/sulfide, functionalized coating of carbon surface, graphene, etc.) and its applications (such as magnetic separation, protein fixation, magnetic catalyst, environmental treatment, medical research, etc.). In the end, some existing challenges and possible future trends in the field were discussed.
Collapse
|