1
|
Shibaki R, Kakikawa M. Different effects of magnetic field on drug activity in human uterine sarcoma cell lines MES-SA and MES-SA/Dx5. Electromagn Biol Med 2022; 41:343-351. [DOI: 10.1080/15368378.2022.2095645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Reo Shibaki
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Makiko Kakikawa
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
2
|
Aparicio-Bautista DI, Chávez-Valenzuela D, Ambriz-Álvarez G, Córdova-Fraga T, Reyes-Grajeda JP, Medina-Contreras Ó, Rodríguez-Cruz F, García-Sierra F, Zúñiga-Sánchez P, Gutiérrez-Gutiérrez AM, Arellanes-Robledo J, Basurto-Islas G. An Extremely Low-Frequency Vortex Magnetic Field Modifies Protein Expression, Rearranges the Cytoskeleton, and Induces Apoptosis of a Human Neuroblastoma Cell Line. Bioelectromagnetics 2022; 43:225-244. [PMID: 35437793 DOI: 10.1002/bem.22400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/10/2021] [Accepted: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Homogeneous extremely low-frequency electromagnetic fields (ELF-EMFs) alter biological phenomena, including the cell phenotype and proliferation rate. Heterogenous vortex magnetic fields (VMFs), a new approach of exposure to magnetic fields, induce systematic movements on charged biomolecules from target cells; however, the effect of VMFs on living systems remains uncertain. Here, we designed, constructed, and characterized an ELF-VMF-modified Rodin's coil to expose SH-SY5Y cells. Samples were analyzed by performing 2D-differential-gel electrophoresis, identified by MALDI-TOF/TOF, validated by western blotting, and characterized by confocal microscopy. A total of 106 protein spots were differentially expressed; 40 spots were downregulated and 66 were upregulated in the exposed cell proteome, compared to the control cell proteome. The identified spots are associated with cytoskeleton and cell viability proteins, and according to the protein-protein interaction network, a significant interaction among them was found. Our data revealed a decrease in cell survival associated with apoptotic cells without effects on the cell cycle, as well as evident changes in the cytoskeleton. We demonstrated that ELF-VMFs, at a specific frequency and exposure time, alter the cell proteome and structurally affect the target cells. This is the first report showing that VMF application might be a versatile system for testing different hypotheses in living systems, using appropriate exposure parameters.© 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Diana I Aparicio-Bautista
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | | | | | - Teodoro Córdova-Fraga
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato, México
| | - Juan P Reyes-Grajeda
- Laboratorio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Óscar Medina-Contreras
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Fanny Rodríguez-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Zacatenco, Ciudad de México, México
| | - Francisco García-Sierra
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Zacatenco, Ciudad de México, México
| | | | | | - Jaime Arellanes-Robledo
- CONACYT-Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato, México
| |
Collapse
|
3
|
Martínez-Herrera M, Figueroa-Gerstenmaier S, López-Camacho PY, Millan-Pacheco C, Balderas-Altamirano MA, Mendoza-Franco G, García-Sierra F, Zavala-Ocampo LM, Basurto-Islas G. Multiadducts of C60 Modulate Amyloid-β Fibrillation with Dual Acetylcholinesterase Inhibition and Antioxidant Properties: In Vitro and In Silico Studies. J Alzheimers Dis 2022; 87:741-759. [DOI: 10.3233/jad-215412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Amyloid-β (Aβ) fibrils induce cognitive impairment and neuronal loss, leading to onset of Alzheimer’s disease (AD). The inhibition of Aβ aggregation has been proposed as a therapeutic strategy for AD. Pristine C60 has shown the capacity to interact with the Aβ peptide and interfere with fibril formation but induces significant toxic effects in vitro and in vivo. Objective: To evaluate the potential of a series of C60 multiadducts to inhibit the Aβ fibrillization. Methods: A series of C60 multiadducts with four to six diethyl malonyl and their corresponding disodium-malonyl substituents were synthesized as individual isomers. Their potential on Aβ fibrillization inhibition was evaluated in vitro, in cellulo, and silico. Antioxidant activity, acetylcholinesterase inhibition capacity, and toxicity were assessed in vitro. Results: The multiadducts modulate Aβ fibrils formation without inducing cell toxicity, and that the number and polarity of the substituents play a significant role in the adducts efficacy to modulate Aβ aggregation. The molecular mechanism of fullerene-Aβ interaction and modulation was identified. Furthermore, the fullerene derivatives exhibited antioxidant capacity and reduction of acetylcholinesterase activity. Conclusion: Multiadducts of C60 are novel multi-target-directed ligand molecules that could hold considerable promise as the starting point for the development of AD therapies.
Collapse
Affiliation(s)
- Melchor Martínez-Herrera
- Departamento de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Cuajimalpa, Ciudad de México, México
| | | | - Perla Y. López-Camacho
- Departamento de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana, Cuajimalpa, Ciudad de México, México
| | - Cesar Millan-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Graciela Mendoza-Franco
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Franciscos García-Sierra
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Lizeth M. Zavala-Ocampo
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Cuajimalpa, Ciudad de México, México
| | - Gustavo Basurto-Islas
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León, León, Gto., Mexico
| |
Collapse
|
4
|
Hayashi S, Kakikawa M. Exposure to 60 Hz magnetic field can affect membrane proteins and membrane potential in human cancer cells. Electromagn Biol Med 2021; 40:459-466. [PMID: 34396886 DOI: 10.1080/15368378.2021.1958340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The experimental data support the hypothesis that extremely low frequency magnetic field (ELF-MF) can affect cell membranes. Since our previous studies suggested that MF changes the permeability of cell membrane, in this study we focused on the cell membrane and investigated the effect of 60 Hz, 50 mT MF on the membrane potential and membrane proteins. The membrane potentials of three cultured human cancer cell lines, A549, MES-SA, and MES-SA/Dx5, were increased by exposure to ELF-MF. When exposed to MF and an anticancer drug, changes in the membrane potentials were detected in A549 and MES-SA cells, but not in the multi drug-resistant cells, MES-SA/Dx5. We examined whether MF has an influence on the membrane proteins extracted from cultured A549 cells, using DiBAC4(3) dye enhanced fluorescence binding to a hydrophobic site. The increase in fluorescence observed following MF exposure for 10 min indicated that the structure of the hydrophobic site on the membrane proteins changed and became more likely to bind the probe dye. A decrease in fluorescence was detected following exposure to MF for 240 min. These results indicated that 60 Hz, 50 mT MF causes changes in the membrane potential of cultured cancer cells and the conformation of membrane proteins extracted from cultured cancer cells, and has different effects depending on the exposure time.
Collapse
Affiliation(s)
- Seiya Hayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Makiko Kakikawa
- Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Li W, Ma H, He R, Ren X, Zhou C. Prospects and application of ultrasound and magnetic fields in the fermentation of rare edible fungi. ULTRASONICS SONOCHEMISTRY 2021; 76:105613. [PMID: 34119905 PMCID: PMC8207300 DOI: 10.1016/j.ultsonch.2021.105613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Ultrasound has the potential to be broadly applied in the field of agricultural food processing due to advantages such as environmental friendliness, low energy costs, no need for exogenous additives and ease of operation. High-frequency ultrasound is mainly used in medical diagnosis and in the food industry for the identification of ingredients and production line quality testing, while low-frequency ultrasounds is mainly used for extraction and separation, accelerating chemical reactions, auxiliary microbial fermentation and quality enhancement in food industry. Magnetic fields have many advantages of convenient use, such as non-toxic, nonpolluting and safe. High-intensity pulsed magnetic fields are widely used as a physical non-thermal sterilization technology in food processing, while weak magnetic fields are better at activating microorganisms and promoting their growth. Ultrasound and magnetic fields, due to their positive biological effects, have a wide range of applications in the food processing industry. This paper provides an overview of the research progress and applications of ultrasound and magnetic fields in food processing from the perspectives of their biological effects and mechanisms of action. Additionally, with the development and application of physical field technology, physical fields can now be used to provide significant technical advantages for assisting fermentation. Suitable physical fields can promote the growth of microbial cells, improve mycelial production and increase metabolic activity. Furthermore, the current status of research into the use of ultrasound and magnetic field technologies for assisting the fermentation of rare edible fungi, is discussed.
Collapse
Affiliation(s)
- Wen Li
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China; Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China
| | - Haile Ma
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Ronghai He
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Xiaofeng Ren
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cunshan Zhou
- School of Food & Biological Engineering, Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|