1
|
Huang F, Deng Z, Zhang Q, Zhang Z, Li X, Zeng W, Wang Y, Hei Z, Yuan D. Dual-regulation by Cx32 in hepatocyte to trigger and worsen liver graft injury. Transl Res 2023; 262:44-59. [PMID: 37507007 DOI: 10.1016/j.trsl.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Liver transplantation is the ultimate treatment option for end-stage liver failure. However, liver graft injury remains a challenge. This study aimed to investigate the role of connexin32 (Cx32) in liver graft injury and elucidate its mechanism of action. Through detecting liver graft samples from 6 patients, we observed that changes in the Cx32 level coincided with liver graft injury. Therefore, we established autologous orthotopic liver transplantation (AOLT) models using Cx32-knockout and wild-type mice and hypoxia/reoxygenation (H/R) and lipopolysaccharide (LPS) pretreatment models using alpha mouse liver 12 (AML12) cells, to explore Cx32 mechanisms in liver graft injury. Following in vivo and in vitro Cx32 knockout, oxidative stress and inflammatory response were inhibited through the regulation of PKC-α/NF-κB/NLRP3 and Nrf2/NOX4/ROS signaling pathways, thereby reducing Bak/Bax-related apoptosis and ameliorating liver graft injury. When the Cx32-based gap junction (GJ) was blocked with 2-aminoethoxydiphenyl borate (2-APB), ROS transfer was attenuated between neighboring cells, exacerbated oxidative stress and inflammatory response were prevented, and aggravation of liver graft injury was mitigated. These results highlight the dual regulation mechanism of Cx32 in liver graft injury. Through interaction with PKC-α, Cx32 regulated the NF-κB/NLRP3 and Nrf2/NOX4/ROS signaling pathways, thus directly triggering oxidative stress and inflammatory response. Simultaneously, mass-produced ROS were transferred to neighboring cells through Cx32 channels, for which oxidative stress and the inflammatory response were aggravated indirectly. Finally, Bak/Bax-related apoptosis was activated, thereby worsening liver graft injury. Our findings propose Cx32 as a dual mechanistic factor for oxidative stress and inflammatory signaling pathways in regulating cell apoptosis on liver graft injury, which suggests a promising therapeutic targets for liver graft injury.
Collapse
Affiliation(s)
- Fei Huang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zhizhao Deng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Qian Zhang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Zheng Zhang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Xianlong Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Weiqi Zeng
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Yanling Wang
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Ziqing Hei
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| | - Dongdong Yuan
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
2
|
Van Campenhout R, Cogliati B, Vinken M. Effects of acute and chronic disease on cell junctions in mouse liver. EXCLI JOURNAL 2023; 22:1-11. [PMID: 36660194 PMCID: PMC9837383 DOI: 10.17179/excli2022-5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 01/21/2023]
Abstract
Cell junctions, including anchoring, occluding and communicating junctions, play an indispensable role in tissue architecture and homeostasis. Consequently, malfunctioning of cell junctions is linked with a wide range of disorders, including in liver. The present study was set up to investigate the effects of acute and chronic disease induced by chemical compounds on hepatic cell junctions in mice. Mice were either overdosed with paracetamol or repeatedly administered carbon tetrachloride followed by sampling at 24 hours or 8 weeks, respectively. mRNA and protein expression levels of adherens, gap and tight junction components were measured in liver using reverse transcription quantitative real-time polymerase chain reaction analysis and immunoblot techniques, respectively. It was found that protein levels of the adherens junction building blocks β-catenin and γ-catenin, the gap junction components Cx26 and Cx32, and the tight junction constituent zonula occludens 2 were decreased, while mRNA levels of the adherens junction building block E-cadherin, and the tight junction constituent zonula occludens 2 and claudin 1 were upregulated following paracetamol overdosing. Repeated administration of carbon tetrachloride increased protein levels of E-cadherin, β-catenin, Cx26, Cx32, Cx43 and claudin 1. The latter was reflected at the mRNA level. In conclusion, acute and chronic liver disease have different effects on cell junctions in liver.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium,*To whom correspondence should be addressed: Mathieu Vinken, Vrije Universiteit Brussel, Entity of In Vitro Toxicology and Dermato-Cosmetology, Laarbeeklaan 103, B-1090 Brussels, Belgium; Tel: +32-2-4774587, Fax: +32-2-4774582, E-mail:
| |
Collapse
|
3
|
Leroy K, Vilas-Boas V, Gijbels E, Vanderborght B, Devisscher L, Cogliati B, Van Den Bossche B, Colle I, Vinken M. Expression of connexins and pannexins in diseased human liver. EXCLI JOURNAL 2022; 21:1111-1129. [PMID: 36381643 PMCID: PMC9650699 DOI: 10.17179/excli2022-5163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Connexin proteins can form hexameric hemichannels and gap junctions that mediate paracrine and direct intercellular communication, respectively. Gap junction activity is crucial for the maintenance of hepatic homeostasis, while connexin hemichannels become particularly active in liver disease, such as hepatitis, fibrosis, cholestasis or even hepatocellular carcinoma. Channels consisting of connexin-like proteins named pannexins have been directly linked to liver inflammation and cell death. The goal of the present study was to characterize the expression and subcellular localization of connexins and pannexins in liver of patients suffering from various chronic and neoplastic liver diseases. Specifically, real-time quantitative reverse transcription polymerase chain reaction, immunoblotting and immunohistochemistry analyses were performed on human liver biopsies. It was found that pannexin1 and pannexin2 gene expression are correlated to a certain degree, as is pannexin1 protein expression with connexin32 and connexin43 protein expression. Furthermore, this study is the first to detect pannexin3 in human patient liver biopsies via both immunoblot and immunohistochemistry.
Collapse
Affiliation(s)
- Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Eva Gijbels
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Bart Vanderborght
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Universiteit Gent, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Universiteit Gent, Corneel Heymanslaan 10, 9000 Gent, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, 05508-270, São Paulo, Brazil
| | - Bert Van Den Bossche
- Department of Hepatobiliary and Pancreatic Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium,*To whom correspondence should be addressed: Mathieu Vinken, Department of Pharmaceutical and Pharmacological Sciences, Entity of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Tel.: +3224774587, E-mail:
| |
Collapse
|
4
|
Van Campenhout R, Leroy K, Cooreman A, Tabernilla A, Cogliati B, Kadam P, Vinken M. Connexin-Based Channels in the Liver. Compr Physiol 2022; 12:4147-4163. [PMID: 35950654 DOI: 10.1002/cphy.c220007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Connexin proteins oligomerize in hexameric structures called connexin hemichannels, which then dock to form gap junctions. Gap junctions direct cell-cell communication by allowing the exchange of small molecules and ions between neighboring cells. In this way, hepatic gap junctions support liver homeostasis. Besides serving as building blocks for gap junctions, connexin hemichannels provide a pathway between the intracellular and the extracellular environment. The activation of connexin hemichannels is associated with acute and chronic liver pathologies. This article discusses the role of gap junctions and connexin hemichannels in the liver. © 2022 American Physiological Society. Compr Physiol 12:1-17, 2022.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kaat Leroy
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrés Tabernilla
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Prashant Kadam
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Sun X, Xiao H, Li S, Chen R, Lin Z, Yang Y, Chen Z, Deng L, Huang H. Connexin32 ameliorates epithelial-to-mesenchymal-transition in diabetic renal tubular via inhibiting NOX4. Pharmacol Res 2022; 176:106084. [PMID: 35051590 DOI: 10.1016/j.phrs.2022.106084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
Abstract
Renal tubulointerstitial fibrosis (RIF), characterized by epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (TECs), is the main cause of diabetic renal fibrosis. Oxidative stress plays a pivotal role in the development of diabetic RIF. Connexin32 (Cx32), prominently expressed in renal TECs, has emerged as an important player in the regulation of oxidative stress. However, the role of Cx32 in diabetic RIF has not been explored yet. Here, we showed that adenovirus-mediated Cx32 overexpression suppressed EMT to ameliorate RIF and renal function in STZ-induced diabetic mice, while knockout (KO) of Cx32 exacerbated RIF in diabetic mice. Moreover, overexpression of Cx32 inhibited EMT and the production of extra cellular matrix (ECM) in high glucose (HG) induced NRK-52E cells, whereas knockdown of Cx32 showed the opposite effects. Furthermore, we showed that NOX4, the main source of ROS in renal tubular, was down-regulated by Cx32. Mechanistically, Cx32 down-regulated the expression of PKC alpha in a carboxyl-terminal-dependent manner, thereby inhibiting the phosphorylation at Thr147 of p22phox triggered by PKC alpha, which ultimately repressed the formation of the p22phox-NOX4 complex to reduce the protein level of NOX4. Thus, we establish Cx32 as a novel target and confirm the protection mechanism in RIF.
Collapse
Affiliation(s)
- Xiaohong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanshan Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rui Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeyuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Chen ZQ, Sun XH, Li XJ, Xu ZC, Yang Y, Lin ZY, Xiao HM, Zhang M, Quan SJ, Huang HQ. Polydatin attenuates renal fibrosis in diabetic mice through regulating the Cx32-Nox4 signaling pathway. Acta Pharmacol Sin 2020; 41:1587-1596. [PMID: 32724174 PMCID: PMC7921128 DOI: 10.1038/s41401-020-0475-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
We previously found that polydatin could attenuate renal oxidative stress in diabetic mice and improve renal fibrosis. Recent evidence shows that NADPH oxidase 4 (Nox4)-derived reactive oxygen species (ROS) contribute to inflammatory and fibrotic processes in diabetic kidneys. In this study we investigated whether polydatin attenuated renal fibrosis by regulating Nox4 in vitro and in vivo. In high glucose-treated rat glomerular mesangial cells, polydatin significantly decreased the protein levels of Nox4 by promoting its K48-linked polyubiquitination, thus inhibited the production of ROS, and eventually decreasing the expression of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1), the main factors that exacerbate diabetic renal fibrosis. Overexpression of Nox4 abolished the inhibitory effects of polydatin on FN and ICAM-1 expression. In addition, the expression of Connexin32 (Cx32) was significantly decreased, which was restored by polydatin treatment. Cx32 interacted with Nox4 and reduced its protein levels. Knockdown of Cx32 abolished the inhibitory effects of polydatin on the expression of FN and ICAM-1. In the kidneys of streptozocin-induced diabetic mice, administration of polydatin (100 mg·kg-1·d-1, ig, 6 days a week for 12 weeks) increased Cx32 expression and reduced Nox4 expression, decreased renal oxidative stress levels and the expression of fibrotic factors, eventually attenuating renal injury and fibrosis. In conclusion, polydatin promotes K48-linked polyubiquitination and degradation of Nox4 by restoring Cx32 expression, thereby decreasing renal oxidative stress levels and ultimately ameliorating the pathological progress of diabetic renal fibrosis. Thus, polydatin reduces renal oxidative stress levels and attenuates diabetic renal fibrosis through regulating the Cx32-Nox4 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Quan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021, China
| | - Xiao-Hong Sun
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Juan Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, 518026, China
| | - Zhan-Chi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yan Yang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ze-Yuan Lin
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Hai-Ming Xiao
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meng Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shi-Jian Quan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - He-Qing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Cooreman A, Van Campenhout R, Crespo Yanguas S, Gijbels E, Leroy K, Pieters A, Tabernilla A, Van Brantegem P, Annaert P, Cogliati B, Vinken M. Cholestasis Differentially Affects Liver Connexins. Int J Mol Sci 2020; 21:E6534. [PMID: 32906817 PMCID: PMC7116118 DOI: 10.3390/ijms21186534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/11/2022] Open
Abstract
Connexins are goal keepers of tissue homeostasis, including in the liver. As a result, they are frequently involved in disease. The current study was set up to investigate the effects of cholestatic disease on the production of connexin26, connexin32 and connexin43 in the liver. For this purpose, bile duct ligation, a well-known trigger of cholestatic liver injury, was applied to mice. In parallel, human hepatoma HepaRG cell cultures were exposed to cholestatic drugs and bile acids. Samples from both the in vivo and in vitro settings were subsequently subjected to assessment of mRNA and protein quantities as well as to in situ immunostaining. While the outcome of cholestasis on connexin26 and connexin43 varied among experimental settings, a more generalized repressing effect was seen for connexin32. This has also been observed in many other liver pathologies and could suggest a role for connexin32 as a robust biomarker of liver disease and toxicity.
Collapse
Affiliation(s)
- Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Andrés Tabernilla
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| | - Pieter Van Brantegem
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, Belgium; (P.V.B.); (P.A.)
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, Belgium; (P.V.B.); (P.A.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (A.C.); (R.V.C.); (S.C.Y.); (E.G.); (K.L.); (A.P.); (A.T.)
| |
Collapse
|
8
|
Leroy K, Pieters A, Tabernilla A, Cooreman A, Van Campenhout R, Cogliati B, Vinken M. Targeting gap junctional intercellular communication by hepatocarcinogenic compounds. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:255-275. [PMID: 32568623 DOI: 10.1080/10937404.2020.1781010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gap junctions in liver, as in other organs, play a critical role in tissue homeostasis. Inherently, these cellular constituents are major targets for systemic toxicity and diseases, including cancer. This review provides an overview of chemicals that compromise liver gap junctions, in particular biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. The focus in this review is placed upon the mechanistic scenarios that underlie these adverse effects. Further, the potential use of gap junctional activity as an in vitro biomarker to identify non-genotoxic hepatocarcinogenic chemicals is discussed.
Collapse
Affiliation(s)
- Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Andrés Tabernilla
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária , São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| |
Collapse
|
9
|
Effects of Pristine C 60 Fullerenes on Liver and Pancreas in α-Naphthylisothiocyanate-Induced Cholangitis. Dig Dis Sci 2020; 65:215-224. [PMID: 31312992 DOI: 10.1007/s10620-019-05730-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/09/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND A significant role in pathogenesis of cholangitis is attributed to excessive reactive oxygen species production and oxidative stress. Therefore, antioxidants could be promising therapeutics. AIMS The effects of powerful free radical scavenger C60 fullerene on hepatic and pancreatic manifestations of acute and chronic cholangitis in rats were aimed to be discovered. METHODS Acute (AC, 3 days) and chronic (CC, 28 days) cholangitis models were simulated by single (AC) and 4 weekly (CC) α-naphthylisothiocyanate per os administrations. Pristine C60 fullerene aqueous colloid solution (C60FAS, 0.15 mg/ml, size of aggregates 1.2-100 nm) was administered either per os or intraperitoneally at a dose of 0.5 mg/kg C60 fullerene daily (AC) and every other day (CC). Prednisolone was used as a reference. Liver and pancreas autopsies were analyzed, and blood serum biochemical markers were measured. Pan-cytokeratin expression in HepG2 cells was assessed after 48-h incubation with C60FAS. RESULTS On AC, C60FAS normalized elevated bilirubin, alkaline phosphatase, and triglycerides, diminished fibrotic alterations in liver, and improved pancreas state when applied by both ways. Additionally, C60FAS per os significantly reduced the signs of inflammation in liver and pancreas. On CC, C60FAS also mitigated liver fibrosis and inflammation, improved pancreas state, and normalized alkaline phosphatase and triglycerides. The remedy effect of C60FAS was more expressed compared to that of prednisolone on both models. Furthermore, C60FAS inhibited pan-cytokeratin expression in HepG2 cells in a dose-dependent manner. CONCLUSION Pristine C60 fullerene inhibits liver inflammation and fibrogenesis and partially improved liver and pancreas state under acute and chronic cholangitis.
Collapse
|
10
|
Hernández-Guerra M, Hadjihambi A, Jalan R. Gap junctions in liver disease: Implications for pathogenesis and therapy. J Hepatol 2019; 70:759-772. [PMID: 30599172 DOI: 10.1016/j.jhep.2018.12.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
In the normal liver, cells interact closely through gap junctions. By providing a pathway for the trafficking of low molecular mass molecules, these channels contribute to tissue homeostasis and maintenance of hepatic function. Thus, dysfunction of gap junctions affects a wide variety of liver processes, such as differentiation, cell death, inflammation and fibrosis. In fact, dysfunctional gap junctions have been implicated, for more than a decade, in cholestatic disease, hepatic cancer and cirrhosis. Additionally, in recent years there is an increasing body of evidence that these channels are also involved in other relevant and prevalent liver pathological processes, such as non-alcoholic fatty liver disease, acute liver injury and portal hypertension. In parallel to these new clinical implications the available data include controversial observations. Thus, a comprehensive overview is required to better understand the functional complexity of these pores. This paper will review the most recent knowledge concerning gap junction dysfunction, with a special focus on the role of these channels in the pathogenesis of relevant clinical entities and on potential therapeutic targets that are amenable to modification by drugs.
Collapse
Affiliation(s)
| | | | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Medical School, London, UK
| |
Collapse
|
11
|
Cooreman A, Van Campenhout R, Ballet S, Annaert P, Van Den Bossche B, Colle I, Cogliati B, Vinken M. Connexin and Pannexin (Hemi)Channels: Emerging Targets in the Treatment of Liver Disease. Hepatology 2019; 69:1317-1323. [PMID: 30300925 DOI: 10.1002/hep.30306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022]
Abstract
Connexin proteins are the building blocks of hemichannels, which dock further between adjacent cells to form gap junctions. Gap junctions control the intercellular exchange of critical homeostasis regulators. By doing so, gap junctions control virtually all aspects of the hepatic life cycle. In the last decade, it has become clear that connexin hemichannels also provide a pathway for cellular communication on their own independent of their role as structural precursors of gap junctions, namely between the cytosol of an individual cell and its extracellular environment. In contrast to gap junctions, connexin hemichannels become particularly active in liver disease by facilitating inflammation and cell death. This equally holds true for cellular channels composed of pannexins, being connexin-like proteins recently identified in the liver that gather in structures reminiscent of hemichannels. This paper gives an overview of the involvement of connexin-based and pannexin-based channels in noncancerous liver disease.
Collapse
Affiliation(s)
- Axelle Cooreman
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Bert Van Den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Aalst, Belgium
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Aalst, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
12
|
Genetic ablation of pannexin1 counteracts liver fibrosis in a chemical, but not in a surgical mouse model. Arch Toxicol 2018; 92:2607-2627. [PMID: 29987408 DOI: 10.1007/s00204-018-2255-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is the final common pathway for almost all causes of chronic liver injury. This chronic disease is characterized by excessive deposition of extracellular matrix components mainly due to transdifferentiation of quiescent hepatic stellate cell into myofibroblasts-like cells, which in turn is driven by cell death and inflammation. In the last few years, paracrine signaling through pannexin1 channels has emerged as a key player in the latter processes. The current study was set up to investigate the role of pannexin1 signaling in liver fibrosis. Wild-type and whole body pannexin1 knock-out mice were treated with carbon tetrachloride or subjected to bile duct ligation. Evaluation of the effects of pannexin1 deletion was based on a number of clinically relevant read-outs, including markers of liver damage, histopathological analysis, oxidative stress, inflammation and regenerative capacity. In parallel, to elucidate the molecular pathways affected by pannexin1 deletion as well as to mechanistically anchor the clinical observations, whole transcriptome analysis of liver tissue was performed. While pannexin1 knock-out mice treated with carbon tetrachloride displayed reduced collagen content, hepatic stellate cell activation, inflammation and hepatic regeneration, bile duct ligated counterparts showed increased hepatocellular injury and antioxidant enzyme activity with a predominant immune response. Gene expression profiling revealed a downregulation of fibrotic and immune responses in pannexin1 knock-out mice treated with carbon tetrachloride, whereas bile duct ligated pannexin1-deficient animals showed a pronounced inflammatory profile. This study shows for the first time an etiology-dependent role for pannexin1 signaling in experimental liver fibrosis.
Collapse
|
13
|
Abstract
Although a plethora of signaling pathways are known to drive the activation of hepatic stellate cells in liver fibrosis, the involvement of connexin-based communication in this process remains elusive. Connexin43 expression is enhanced in activated hepatic stellate cells and constitutes the molecular building stone of hemichannels and gap junctions. While gap junctions support intercellular communication, and hence the maintenance of liver homeostasis, hemichannels provide a circuit for extracellular communication and are typically opened by pathological stimuli, such as oxidative stress and inflammation. The present study was set up to investigate the effects of inhibition of connexin43-based hemichannels and gap junctions on liver fibrosis in mice. Liver fibrosis was induced by administration of thioacetamide to Balb/c mice for eight weeks. Thereafter, mice were treated for two weeks with TAT-Gap19, a specific connexin43 hemichannel inhibitor, or carbenoxolone, a general hemichannel and gap junction inhibitor. Subsequently, histopathological analysis was performed and markers of hepatic damage and functionality, oxidative stress, hepatic stellate cell activation and inflammation were evaluated. Connexin43 hemichannel specificity of TAT-Gap19 was confirmed in vitro by fluorescence recovery after photobleaching analysis and the measurement of extracellular release of adenosine-5′-triphosphate. Upon administration to animals, both TAT-Gap19 and carbenoxolone lowered the degree of liver fibrosis accompanied by superoxide dismutase overactivation and reduced production of inflammatory proteins, respectively. These results support a role of connexin-based signaling in the resolution of liver fibrosis, and simultaneously demonstrate the therapeutic potential of TAT-Gap19 and carbenoxolone in the treatment of this type of chronic liver disease.
Collapse
|