1
|
Conan A, Dehaut N, Enstipp M, Handrich Y, Jumeau J. Stormwater ponds as an amphibian breeding site: a case study with European green toad tadpoles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12114-12124. [PMID: 36104646 DOI: 10.1007/s11356-022-22991-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Stormwater ponds (SWPs) are built to collect and retain polluted runoff water from roads. Consequently, they are not perceived as suitable habitat for wetland species, such as many amphibians. However, given the drastic decline of wetland areas, SWPs may serve as a habitat for protected amphibian species, such as the European green toad (Bufotes viridis). The latter species is frequently found inside these artificial ponds, but their reproductive success is unknown. We assessed the suitability of SWPs as breeding habitat for European green toads by monitoring 8 SWPs and 8 semi-natural ponds (SNPs), which served as control sites. At each site, two groups of 30 tadpoles, originating at that site, were held inside two floating enclosures that contained sediment from the respective pond. During bi-weekly monitoring, tadpoles were counted and measured, allowing to estimate growth and mortality rates. A variety of biotic and abiotic factors were studied to determine the causes of potential differences in growth and mortality rates between the two pond types. While growth rate did not differ between pond types, mortality rates were significantly greater in SWPs than in SNPs. The extremely low survival rate observed in SWPs might be explained by the considerably greater pollutant concentration in their sediment and/or by the presence of leeches, which were found exclusively inside SWPs. Implementation of management measures, such as regular draining/dredging during winter, might help to lower the pollutant concentration in the sediment and reduce the density of leeches inside SWPs, improving their suitability as habitat for amphibians.
Collapse
Affiliation(s)
- Antonin Conan
- CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France.
- Collectivité Européenne d'Alsace, CERISE, Place du Quartier Blanc, 67964, Cedex 9, Strasbourg, France.
| | - Nathan Dehaut
- Collectivité Européenne d'Alsace, CERISE, Place du Quartier Blanc, 67964, Cedex 9, Strasbourg, France
| | - Manfred Enstipp
- CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Yves Handrich
- CNRS, IPHC UMR 7178, Université de Strasbourg, 67000, Strasbourg, France
| | - Jonathan Jumeau
- Collectivité Européenne d'Alsace, CERISE, Place du Quartier Blanc, 67964, Cedex 9, Strasbourg, France
| |
Collapse
|
2
|
Dang Z. Amphibian toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:120006. [PMID: 35998776 DOI: 10.1016/j.envpol.2022.120006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Both amphibian metamorphosis assay (AMA) and larval amphibian growth and development assay (LAGDA) can detect thyroid-mediated modality and adversity on the basis of morphological changes during the thyroid hormone-dependent metamorphosis. They are used for identification of thyroid hormone system disrupting chemicals (TDCs) for non-target organisms or the environment. The EU Guidance recommends that the AMA and the LAGDA should be used to address sufficient investigation of the thyroid-mediated modality and adversity, respectively. In the EU discussions over identification of TDCs, the necessity of using LAGDA as a follow-up of positive results of the AMA has been questioned because of the overlap between the endpoints and the exposure of both tests. This study analyzed similarities, differences, and sensitivity of these two assays in detection of TDCs. For agonists and most of antagonists of the hypothalamic-pituitary-thyroid (HPT) axis, both AMA and LAGDA can detect the thyroid-mediated modality and adversity. The LAGDA, as a follow-up of the positive results of the AMA, may not be needed because the results of AMA are considered enough for identification of TDCs. For chemicals like inhibitors of iodotyrosine deiodinase, the LAGDA is considered necessary for identification of TDCs because the thyroid-mediated adversity cannot be detected until Nieuwkoop and Faber (NF) stage 62. Incorporation of mechanistic endpoints into existing test guidelines and the use of Xenopus Eleutheroembryo Thyroid Assay (XETA), extended amphibian metamorphosis assay (EAMA) and adverse outcome pathways (AOPs) for testing and identification of TDCs are further discussed.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
3
|
Zhang Y, Jia DD, Zhang YF, Cheng MD, Zhu WX, Li PF, Zhang YF. The emerging function and clinical significance of circRNAs in Thyroid Cancer and Autoimmune Thyroid Diseases. Int J Biol Sci 2021; 17:1731-1741. [PMID: 33994857 PMCID: PMC8120456 DOI: 10.7150/ijbs.55381] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer (TC) is one of the most common malignant tumors, with high morbidity and mortality rates worldwide. The incidence of TC, especially that of papillary thyroid carcinoma (PTC); has increased rapidly in recent decades. Autoimmune thyroid disease (AITD) is closely related to TC and has an estimated prevalence of 5%. Thus, it is becoming increasingly important to identify potential diagnostic biomarkers and therapeutic targets for TC and AITD. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently bonded circular structures that lack 5'-3' polarity and polyadenylated tails. Several circRNAs play crucial roles in the development of various diseases, including TC and AITD, and could be important new biomarkers and/or targets for the diagnosis and therapy of such disorders. Although there are four subtypes of TC, research on circRNA has largely focused on its connection to PTC. Therefore, this review mainly summarizes the relationships between circRNAs and PTC and AITD, including the molecular mechanisms underlying these relationships. In particular, the functions of “miRNA sponges” and their interactions with proteins and RNA are discussed. The possible targeting of circRNAs for the prevention, diagnosis, and treatment of TC and AITD is also described. CircRNAs could be potential biomarkers of TC and AITD, although validation will be required before they can be implemented in clinical practice.
Collapse
Affiliation(s)
- Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Meng-Die Cheng
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China. Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Wen-Xiu Zhu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China. Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|