1
|
Nasim I, Ghani N, Nawaz R, Mateev E, Bin Jardan YA. Investigating the impact of Multiwalled Carbon Nanotubes exposure on enzymatic activities and histopathological variations in Swiss albino mice. Sci Rep 2025; 15:2324. [PMID: 39824850 PMCID: PMC11748639 DOI: 10.1038/s41598-024-77526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/23/2024] [Indexed: 01/20/2025] Open
Abstract
Present study was conducted to evaluate the detrimental impacts of exposure of Multi-walled Carbon Nanotubes (MWCNT-NP) on enzymatic activities and tissue structures in Swiss albino mice. The experimental groups of mice received MWCNT-NP for specific time period (seven or fourteen days). Two distinct doses of the MWCNT-NP solution were given orally: 0.45 µg and 0.90 µg, and the distilled water was given to the control group. Serum samples were extracted at 7 and 14 days after the experiment by centrifuging whole blood for 15 min at 3,000 rpm. An enzyme-linked immunosorbent test (ELISA) was used to measure many enzyme assays, such as Angiotensin Converting Enzymes (ACE), Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), and Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase enzyme. Hematoxylin and Eosin (H&E) staining of tissue samples was done along with a histopathological examination. During a 14-day exposure, ACE, NADPH Oxidase, ALT, and AST enzyme levels were significantly higher in the exposed groups (0.45 µg and 0.90 µg) than in the control group (p < 0.05). Male mice exposed to MWCNT-NP showed substantial histological damage in the relevant organs as well as elevated enzyme activity levels. Present study showed a comprehensive and practical assessment of the toxicity associated with MWCNT-NP of different geometries and functionalization.
Collapse
Affiliation(s)
- Iqra Nasim
- Department of Environmental Science, Lahore College for Women University, Lahore, 54000, Pakistan
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Nadia Ghani
- Department of Environmental Science, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
- Faculty of Engineering and Quantity Surveying, INTI International University, Nilai, 71800, Negeri Sembilan, Malaysia
| | - Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
2
|
Chen C, Xue C, Jiang J, Bi S, Hu Z, Yu G, Sun B, Mao C. Neurotoxicity Profiling of Aluminum Salt-Based Nanoparticles as Adjuvants for Therapeutic Cancer Vaccine. J Pharmacol Exp Ther 2024; 390:45-52. [PMID: 38272670 DOI: 10.1124/jpet.123.002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Therapeutic vaccines containing aluminum adjuvants have been widely used in the treatment of tumors due to their powerful immune-enhancing effects. However, the neurotoxicity of aluminum adjuvants with different physicochemical properties has not been completely elucidated. In this study, a library of engineered aluminum oxyhydroxide (EAO) and aluminum hydroxyphosphate (EAHP) nanoparticles was synthesized to determine their neurotoxicity in vitro. It was demonstrated that the surface charge of EAHPs and size of EAOs did not affect the cytotoxicity in N9, bEnd.3, and HT22 cells; however, soluble aluminum ions trigger the cytotoxicity in three different cell lines. Moreover, soluble aluminum ions induce apoptosis in N9 cells, and further mechanistic studies demonstrated that this apoptosis was mediated by mitochondrial reactive oxygen species generation and mitochondrial membrane potential loss. This study identifies the safety profile of aluminum-containing salts adjuvants in the nervous system during therapeutic vaccine use, and provides novel design strategies for their safer applications. SIGNIFICANCE STATEMENT: In this study, it was demonstrated that engineered aluminum oxyhydroxide and aluminum hydroxyphosphate nanoparticles did not induce cytotoxicity in N9, bEnd.3, and HT22 cells. In comparation, soluble aluminum ions triggered significant cytotoxicity in three different cell lines, indicating that the form in which aluminum is presenting may play a crucial role in its safety. Moreover, apoptosis induced by soluble aluminum ions was dependent on mitochondrial damage. This study confirms the safety of engineered aluminum adjuvants in vaccine formulations.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Changying Xue
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Jiaxuan Jiang
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Shisheng Bi
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Zurui Hu
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Ge Yu
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| | - Chuanbin Mao
- State Key Laboratory of Fine Chemicals (C.C., J.J., S.B., Z.H., G.Y., B.S.), School of Bioengineering (C.C., C.X.), School of Chemical Engineering (J.J., S.B., Z.H., G.Y., B.S.), and Frontiers Science Center for Smart Materials Oriented Chemical Engineering (C.C., J.J., S.B., Z.H., G.Y., B.S.), Dalian University of Technology, Dalian, China; and Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China (C.M.)
| |
Collapse
|
3
|
Rele S, Thakur CK, Khan F, Baral B, Saini V, Karthikeyan C, Moorthy NSHN, Jha HC. Curcumin coating: a novel solution to mitigate inherent carbon nanotube toxicity. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:24. [PMID: 38526738 PMCID: PMC10963536 DOI: 10.1007/s10856-024-06789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1β, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.
Collapse
Affiliation(s)
- Samiksha Rele
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - Fatima Khan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Vaishali Saini
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India
| | - N S Hari Narayana Moorthy
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, MP, 484887, India.
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, MP, 453552, India.
| |
Collapse
|
4
|
AbouAitah K, Abdelaziz AM, Higazy IM, Swiderska-Sroda A, Hassan AME, Shaker OG, Szałaj U, Stobinski L, Malolepszy A, Lojkowski W. Functionalized Carbon Nanotubes for Delivery of Ferulic Acid and Diosgenin Anticancer Natural Agents. ACS APPLIED BIO MATERIALS 2024; 7:791-811. [PMID: 38253026 PMCID: PMC10880110 DOI: 10.1021/acsabm.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
It was investigated whether loading multi-wall carbon nanotubes (CNTs) with two natural anticancer agents: ferulic acid (FUA) and diosgenin (DGN), may enhance the anticancer effect of these drugs. The CNTs were functionalized with carboxylic acid (CNTCOOH) or amine (CNTNH2), loaded with the above pro-drugs, as well as both combined and coated with chitosan or chitosan-stearic acid. Following physicochemical characterization, the drug-loading properties and kinetics of the drug's release were investigated. Their effects on normal human skin fibroblasts and MCF-7 breast carcinoma cells, HepG2 hepatocellular carcinoma cells, and A549 non-small-cell lung cancer cells were evaluated in vitro. Their actions at the molecular level were evaluated by assessing the expression of lncRNAs (HULC, HOTAIR, CCAT-2, H19, and HOTTIP), microRNAs (mir-21, mir-92, mir-145, and mir-181a), and proteins (TGF-β and E-cadherin) in HepG2 cells. The release of both pro-drugs depended on the glutathione concentration, coating, and functionalization. Release occurred in two stages: a no-burst/zero-order release followed by a sustained release best fitted to Korsmeyer-Peppas kinetics. The combined nanoformulation cancer inhibition effect on HepG2 cancer cells was more pronounced than for A549 and MCF7 cells. The combined nanoformulations had an additive impact followed by a synergistic effect, with antagonism demonstrated at high concentrations. The nanoformulation coated with chitosan and stearic acid was particularly successful in targeting HepG2 cells and inducing apoptosis. The CNT functionalized with carboxylic acid (CNTCOOH), loaded with both FUA and DGN, and coated with chitosan-stearic acid inhibited the expression of lncRNAs and modulated both microRNAs and proteins. Thus, nanoformulations composed of functionalized CNTs dual-loaded with FUA and DGN and coated with chitosan-stearic acid are a promising drug delivery system that enhances the activity of natural pro-drugs.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Medicinal
and Aromatic Plants Research Department, Pharmaceutical and Drug Industries
Research Institute, National Research Centre
(NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Ahmed M. Abdelaziz
- Supplementary
General Sciences, Future University, End of 90th Street, Fifth Settlement, New Cairo 11835, Egypt
| | - Imane M. Higazy
- Department
of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research
Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Anna Swiderska-Sroda
- Institute
of High Pressure Physics, Polish Academy
of Sciences, Sokolowska
29/37, 01-142 Warsaw, Poland
| | - Abeer M. E. Hassan
- Analytical
Chemistry Department, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Olfat G. Shaker
- Medical
Biochemistry
and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11511, Egypt
| | - Urszula Szałaj
- Institute
of High Pressure Physics, Polish Academy
of Sciences, Sokolowska
29/37, 01-142 Warsaw, Poland
- Faculty
of Materials Engineering, Warsaw University
of Technology, Wołoska 41, 02-507 Warsaw, Poland
| | - Leszek Stobinski
- NANOMATPL
Ltd., 14/38 Wyszogrodzka
Street, Warsaw 03-337, Poland
- Faculty
of Chemical and Process Engineering, Warsaw
University of Technology, 1 Warynskiego Street, 00-645 Warsaw, Poland
| | - Artur Malolepszy
- Faculty
of Chemical and Process Engineering, Warsaw
University of Technology, 1 Warynskiego Street, 00-645 Warsaw, Poland
| | - Witold Lojkowski
- Institute
of High Pressure Physics, Polish Academy
of Sciences, Sokolowska
29/37, 01-142 Warsaw, Poland
| |
Collapse
|
5
|
Lee SS, Oudjedi F, Kirk AG, Paliouras M, Trifiro MA. Photothermal therapy of papillary thyroid cancer tumor xenografts with targeted thyroid stimulating hormone receptor antibody functionalized multiwalled carbon nanotubes. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
AbstractMultiwalled carbon nanotubes (MWCNTs) are being widely investigated in multiple biomedical applications including, and not limited to, drug delivery, gene therapy, imaging, biosensing, and tissue engineering. Their large surface area and aspect ratio in addition to their unique structural, optical properties, and thermal conductivity also make them potent candidates for novel hyperthermia therapy. Here we introduce thyroid hormone stimulating receptor (TSHR) antibody–conjugate–MWCNT formulation as an enhanced tumor targeting and light-absorbing device for the photoablation of xenografted BCPAP papillary thyroid cancer tumors. To ensure successful photothermal tumor ablation, we determined three key criteria that needed to be addressed: (1) predictive pre-operational modeling; (2) real-time monitoring of the tumor ablation process; and (3) post-operational follow-up to assess the efficacy and ensure complete response with minimal side effects. A COMSOL-based model of spatial temperature distributions of MWCNTs upon selected laser irradiation of the tumor was prepared to accurately predict the internal tumor temperature. This modeling ensured that 4.5W of total laser power delivered over 2 min, would cause an increase of tumor temperature above 45 ℃, and be needed to completely ablate the tumor while minimizing the damage to neighboring tissues. Experimentally, our temperature monitoring results were in line with our predictive modeling, with effective tumor photoablation leading to a significantly reduced post 5-week tumor recurrence using the TSHR-targeted MWCNTs. Ultimately, the results from this study support a utility for photosensitive biologically modified MWCNTs as a cancer therapeutic modality. Further studies will assist with the transition of photothermal therapy from preclinical studies to clinical evaluations.
Collapse
|
6
|
Mehrotra S, Dey S, Sachdeva K, Mohanty S, Mandal BB. Recent advances in tailoring stimuli-responsive hybrid scaffolds for cardiac tissue engineering and allied applications. J Mater Chem B 2023; 11:10297-10331. [PMID: 37905467 DOI: 10.1039/d3tb00450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
To recapitulate bio-physical properties and functional behaviour of native heart tissues, recent tissue engineering-based approaches are focused on developing smart/stimuli-responsive materials for interfacing cardiac cells. Overcoming the drawbacks of the traditionally used biomaterials, these smart materials portray outstanding mechanical and conductive properties while promoting cell-cell interaction and cell-matrix transduction cues in such excitable tissues. To date, a large number of stimuli-responsive materials have been employed for interfacing cardiac tissues alone or in combination with natural/synthetic materials for cardiac tissue engineering. However, their comprehensive classification and a comparative analysis of the role played by these materials in regulating cardiac cell behaviour and in vivo metabolism are much less discussed. In an attempt to cover the recent advances in fabricating stimuli-responsive biomaterials for engineering cardiac tissues, this review details the role of these materials in modulating cardiomyocyte behaviour, functionality and surrounding matrix properties. Furthermore, concerns and challenges regarding the clinical translation of these materials and the possibility of using such materials for the fabrication of bio-actuators and bioelectronic devices are discussed.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
| | - Kunj Sachdeva
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Mohanty
- DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India. biman.mandal@iitg,ac.in
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahti-781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
7
|
Komane P, Kumar P, Choonara Y. Functionalised Carbon Nanotubes: Promising Drug Delivery Vehicles for Neurovascular Disorder Intervention. AAPS PharmSciTech 2023; 24:201. [PMID: 37783896 DOI: 10.1208/s12249-023-02651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023] Open
Abstract
Neurovascular diseases are linked to the brain's blood vessels. These disorders are complicated to treat due to the strict selective characteristics of the blood-brain barrier. Consequently, the potency of the pharmacological treatments for these conditions is immensely diminished, leading to a rise in neurovascular-associated morbidity and mortality. Carbon nanotubes are regarded as essential nanoparticles with a promise of treating neurovascular disorders. Current findings have demonstrated the effectiveness of carbon nanotubes as vehicles for ferrying drugs to the site of interest. This review accentuates the theoretical utilisation of carbon nanotubes as drug nanocarriers equipped with the penetrating capability to the blood-brain barrier for treating neurovascular disorders such as ischemic stroke. The success of the carbon nanotube system may result in the development of a new and highly relevant drug delivery procedure. This review will also cover carbon nanotube functionalisation for applications in the biomedical fields, toxicity, in vitro and in vivo drugs and biomolecule delivery, and the future outlook of carbon nanotubes.
Collapse
Affiliation(s)
- Patrick Komane
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| | - Yahya Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, 2193, Parktown, South Africa
| |
Collapse
|
8
|
Hojo M, Maeno A, Sakamoto Y, Yamamoto Y, Taquahashi Y, Hirose A, Suzuki J, Inomata A, Nakae D. Time-Course of Transcriptomic Change in the Lungs of F344 Rats Repeatedly Exposed to a Multiwalled Carbon Nanotube in a 2-Year Test. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2105. [PMID: 37513116 PMCID: PMC10383707 DOI: 10.3390/nano13142105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Despite intensive toxicological studies of carbon nanotubes (CNTs) over the last two decades, only a few studies have demonstrated their pulmonary carcinogenicities in chronic animal experiments, and the underlying molecular mechanisms are still unclear. To obtain molecular insights into CNT-induced lung carcinogenicity, we performed a transcriptomic analysis using a set of lung tissues collected from rats in a 2-year study, in which lung tumors were induced by repeated intratracheal instillations of a multiwalled carbon nanotube, MWNT-7. The RNA-seq-based transcriptome identified a large number of significantly differentially expressed genes at Year 0.5, Year 1, and Year 2. Ingenuity Pathway Analysis revealed that macrophage-elicited signaling pathways such as phagocytosis, acute phase response, and Toll-like receptor signaling were activated throughout the experimental period. At Year 2, cancer-related pathways including ERBB signaling and some axonal guidance signaling pathways such as EphB4 signaling were perturbed. qRT-PCR and immunohistochemistry indicated that several key molecules such as Osteopontin/Spp1, Hmox1, Mmp12, and ERBB2 were markedly altered and/or localized in the preneoplastic lesions, suggesting their participation in the induction of lung cancer. Our findings support a scenario of inflammation-induced carcinogenesis and contribute to a better understanding of the molecular mechanism of MWCNT carcinogenicity.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara 290-0193, Chiba, Japan
| |
Collapse
|
9
|
Luo X, Xie D, Su J, Hu J. Inflammatory Genes Associated with Pristine Multi-Walled Carbon Nanotubes-Induced Toxicity in Ocular Cells. Int J Nanomedicine 2023; 18:2465-2484. [PMID: 37192896 PMCID: PMC10183194 DOI: 10.2147/ijn.s394694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Background The wide application of multi-walled carbon nanotubes (MWCNTs) in various fields has raised enormous concerns regarding their safety for humans. However, studies on the toxicity of MWCNTs to the eye are rare and potential molecular mechanisms are completely lacking. This study was to evaluate the adverse effects and toxic mechanisms of MWCNTs on human ocular cells. Methods Human retinal pigment epithelial cells (ARPE-19) were treated with pristine MWCNTs (7-11 nm) (0, 25, 50, 100 or 200 μg/mL) for 24 hours. MWCNTs uptake into ARPE-19 cells was examined using transmission electron microscopy (TEM). The cytotoxicity was evaluated by CCK-8 assay. The death cells were detected by Annexin V-FITC/PI assay. RNA profiles in MWCNT-exposed and non-exposed cells (n = 3) were analyzed using RNA-sequencing. The differentially expressed genes (DEGs) were identified through the DESeq2 method and hub of which were filtered by weighted gene co-expression, protein-protein interaction (PPI) and lncRNA-mRNA co-expression network analyses. The mRNA and protein expression levels of crucial genes were verified using quantitative polymerase chain reaction (qPCR), colorimetric analysis, ELISA and Western blotting. The toxicity and mechanisms of MWCNTs were also validated in human corneal epithelial cells (HCE-T). Results TEM analysis indicated the internalization of MWCNTs into ARPE-19 cells to cause cell damage. Compared with untreated ARPE-19 cells, those exposed to MWCNTs exhibited significantly decreased cell viabilities in a dose-dependent manner. The percentages of apoptotic (early, Annexin V positive; late, Annexin V and PI positive) and necrotic (PI positive) cells were significantly increased after exposure to IC50 concentration (100 μg/mL). A total of 703 genes were identified as DEGs; 254 and 56 of them were, respectively, included in darkorange2 and brown1 modules that were significantly associated with MWCNT exposure. Inflammation-related genes (including CXCL8, MMP1, CASP3, FOS, CXCL2 and IL11) were screened as hub genes by calculating the topological characteristics of genes in the PPI network. Two dysregulated long non-coding RNAs (LUCAT1 and SCAT8) were shown to regulate these inflammation-related genes in the co-expression network. The mRNA levels of all eight genes were confirmed to be upregulated, while caspase-3 activity and the release of CXCL8, MMP1, CXCL2, IL11 and FOS proteins were demonstrated to be increased in MWCNT-treated ARPE-19 cells. MWCNTs exposure also can induce cytotoxicity and increase the caspase-3 activity and the expression of LUCAT1, MMP1, CXCL2, and IL11 mRNA and protein in HCE-T cells. Conclusion Our study provides promising biomarkers for monitoring MWCNT-induced eye disorders and targets for developing preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
- Correspondence: Xiaogang Luo; Jianchen Hu, Tel +86-0512-67162531, Email ;
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jing Su
- Shanghai Institute of Spacecraft Equipment, Shanghai, 200240, People’s Republic of China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
10
|
Hassani M, Tahghighi A, Rohani M, Hekmati M, Ahmadian M, Ahmadvand H. Robust antibacterial activity of functionalized carbon nanotube- levofloxacine conjugate based on in vitro and in vivo studies. Sci Rep 2022; 12:10064. [PMID: 35710710 PMCID: PMC9203521 DOI: 10.1038/s41598-022-14206-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
A new nano-antibiotic was synthesized from the conjugation of multi-walled carbon nanotubes with levofloxacin (MWCNT-LVX) through covalent grafting of drug with surface-modified carbon nanotubes in order to achieve an effective, safe, fast-acting nano-drug with the minimal side effects. This study is the first report on the evaluation of in vitro cell viability and antibacterial activity of nano-antibiotic along in addition to the in vivo antibacterial activity in a burn wound model. The drug-loading and release profile at different pH levels was determined using an ultraviolet–visible spectrometer. MWCNT-LVX was synthesized by a simple, reproducible and cost-effective method for the first time and characterized using various techniques, such as scanning electron microscope, transmission electron microscopy, and Brunauer–Emmett–Teller analysis, and so forth. The noncytotoxic nano-antibiotic showed more satisfactory in vitro antibacterial activity against Staphylococcus aureus compared to Pseudomona aeruginosa. The novel synthetic nano-drug possessed high loading capacity and pH-sensitive release profile; resultantly, it exhibited very potent bactericidal activity in a mouse S. aureus wound infection model compared to LVX. Based on the results, the antibacterial properties of the drug enhanced after conjugating with surface-modified MWCNTs. The nano-antibiotic has great industrialization potential for the simple route of synthesis, no toxicity, proper drug loading and release, low effective dose, and strong activity against wound infections. In virtue of unique properties, MWCNTs can serve as a controlled release and delivery system for drugs. The easy penetration to biological membranes and barriers can also increase the drug delivery at lower doses compared to the main drug alone, which can lead to the reduction of its side effects. Hence, MWCNTs can be considered a promising nano-carrier of LVX in the treatment of skin infections.
Collapse
Affiliation(s)
- Marzieh Hassani
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran.
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ahmadian
- Department of Biostatistics, School of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ahmadvand
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
11
|
Analysis of Nanomaterials on Biological and Environmental Systems and New Analytical Methods for Improved Detection. Int J Mol Sci 2022; 23:ijms23116331. [PMID: 35683010 PMCID: PMC9181213 DOI: 10.3390/ijms23116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
The advancing field of nanoscience has produced lower mass, smaller size, and expanded chemical composition nanoparticles over recent years. These new nanoparticles have challenged traditional analytical methods of qualification and quantification. Such advancements in nanoparticles and nanomaterials have captured the attention of toxicologists with concerns regarding the environment and human health impacts. Given that nanoparticles are only limited by size (1–100 nm), their chemical and physical characteristics can drastically change and thus alter their overall nanotoxicity in unpredictable ways. A significant limitation to the development of nanomaterials is that traditional regulatory and scientific methods used to assess the biological and environmental toxicity of chemicals do not generally apply to the assessment of nanomaterials. Significant research effort has been initiated, but much more is still needed to develop new and improved analytical measurement methods for detecting and quantitating nanomaterials in biological and environmental systems.
Collapse
|
12
|
Salih SJ, Ghobadi MZ. Evaluating the cytotoxicity and pathogenicity of multi-walled carbon nanotube through weighted gene co-expression network analysis: a nanotoxicogenomics study. BMC Genom Data 2022; 23:12. [PMID: 35176998 PMCID: PMC8851761 DOI: 10.1186/s12863-022-01031-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/08/2022] [Indexed: 11/20/2022] Open
Abstract
Background Multi-walled carbon nanotube (MWCNT) is one of the most momentous carbonaceous nanoparticles which is widely used for various applications such as electronics, vehicles, and therapeutics. However, their possible toxicity and adverse effects convert them into a major health threat for humans and animals. Results In this study, we employed weighted gene co-expression network analysis (WGCNA) to identify the co-expressed gene groups and dysregulated pathways due to the MWCNT exposure. For this purpose, three weighted gene co-expression networks for the microarray gene expression profiles of the mouse after 1, 6, and 12-month post-exposure to MWCNT were constructed. The module-trait analysis specified the significant modules related to different doses (1, 10, 40, and 80 µg) of MWCNT. Afterward, common genes between co-regulated and differentially expressed genes were determined. The further pathway analysis highlighted the enrichment of genes including Actb, Ube2b, Psme3, Ezh2, Alas2, S100a10, Ypel5, Rhoa, Rac1, Ube2l6, Prdx2, Ctsb, Bnip3l, Gp6, Myh9, Ube2k, Mbnl1, Kbtbd8, Riok3, Itgb1, Rap1a, and Atp5h in immune-, inflammation-, and protein metabolism-related pathways. Conclusions This study discloses the genotoxicity and cytotoxicity effects of various doses of MWCNT which also affect the metabolism system. The identified genes can serve as potential biomarkers and therapeutic candidates. However, further studies should be performed to validate them in human cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01031-3.
Collapse
Affiliation(s)
- Shameran Jamal Salih
- Department of Chemistry, Faculty of Science and Health, Koya University, KOY45, Koya, Kurdistan Region, Iraq
| | | |
Collapse
|
13
|
Fujita K, Obara S, Maru J, Endoh S. Genotoxicity assessment of cellulose nanofibrils using a standard battery of in vitro and in vivo assays. Toxicol Rep 2022; 9:68-77. [PMID: 35004184 PMCID: PMC8718569 DOI: 10.1016/j.toxrep.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022] Open
Abstract
CNFs did not induce bacterial reverse and in vitro mammalian cell gene mutation. CNFs did not induce chromosomal aberration in CHL/IU cells. CNFs did not increase the proportion of micronucleated polychromatic erythrocytes in rat bone marrow. Three types of CNFs with different manufacturing methods exhibited no genotoxicity.
Cellulose nanofibrils (CNFs) are identified as novel nanomaterials with many potential applications. Since CNFs are fibrous manufactured nanomaterials, their potential carcinogenic effects and mesothelial toxicity raise some concerns. In this study, we conducted a standard battery of in vitro and in vivo assays to evaluate the genotoxicity of two CNF types using different manufacturing methods and physicochemical properties. Namely, one was CNF produced via chemical modification by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation, while the other was CNF produced via mechanical defibrillation using needle bleached kraft pulp. A bacterial reverse mutation test and a mouse lymphoma TK assay revealed that CNFs at 100 μg/mL did not induce bacterial reverse mutations and in vitro mammalian cell gene mutation. Further, in vitro chromosomal aberration tests demonstrated that CNFs at 100 μg/mL did not induce chromosomal aberration in Chinese hamster lung fibroblasts. From the mammalian erythrocyte micronucleus test, no statistically significant increase was observed in the proportion of micronucleated polychromatic erythrocytes in the bone marrow cells of rats intratracheally instilled with any concentration of CNFs (0.25–1.0 mg/kg) compared with values from respective negative control groups. Therefore, this battery of in vitro and in vivo assays illustrated that the CNFs examined in this study did not induce genotoxicity, suggesting our results provide valuable insight on the future use of these materials in various industrial applications.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Sawae Obara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Shigehisa Endoh
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
14
|
Pei L, Yang W, Cao Y. Influences of Unmodified and Carboxylated Carbon Nanotubes on Lipid Profiles in THP-1 Macrophages: A Lipidomics Study. Int J Toxicol 2021; 41:16-25. [PMID: 34886715 DOI: 10.1177/10915818211056633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the possible roles of surface modifications in determining multi-walled carbon nanotube (MWCNT)-promoted endoplasmic reticulum (ER) stress-mediated lipid-laden macrophage foam cell formation are still in debate, we compared unmodified and carboxylated MWCNT-induced cytotoxicity, lipid profile changes, and expression of ER stress genes in THP-1 macrophages. Particularly, we focused on lipid profile changes by using lipidomics approaches. We found that unmodified and carboxylated MWCNTs significantly decreased cellular viability and appeared to damage the cellular membrane to a similar extent. Likewise, the results from Oil Red O staining showed that both types of MWCNTs slightly but significantly induced lipid accumulation. In keeping with Oil Red O staining results, lipidomics data showed that both types of MWCNTs up-regulated most of the lipid classes. Interestingly, almost all lipid classes were relatively higher in carboxylated MWCNT-exposed THP-1 macrophages compared with unmodified MWCNT-exposed cells, indicating that carboxylated MWCNTs more effectively changed lipid profiles. But in contrast to our expectation, none of the MWCNTs significantly induced the expression of ER stress genes. Even, compared with carboxylated MWCNTs, unmodified MWCNTs induced higher expression of lipid genes, including macrophage scavenger receptor 1 and fatty acid synthase. Combined, our results suggested that even though carboxylation did not significantly affect MWCNT-induced lipid accumulation, carboxylated MWCNTs were more potent to alter lipid profiles in THP-1 macrophages, indicating the need to use omics techniques to understand the exact nanotoxicological effects of MWCNTs. However, the differential effects of unmodified and carboxylated MWCNTs on lipid profiles might not be related with the induction of ER stress.
Collapse
Affiliation(s)
- Lanjie Pei
- 498598Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.,498598Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Wenxiang Yang
- 498598Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.,498598Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
15
|
Fujita K, Obara S, Maru J. Pulmonary toxicity, cytotoxicity, and genotoxicity of submicron-diameter carbon fibers with different diameters and lengths. Toxicology 2021; 466:153063. [PMID: 34890706 DOI: 10.1016/j.tox.2021.153063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Submicron-diameter carbon fibers (SCFs) are a type of fine-diameter fibrous carbon material that can be used in various applications. To accelerate their practical application, a hazard assessment of SCFs must be undertaken. This study demonstrated the pulmonary toxicity, cytotoxicity, and genotoxicity of three types of SCFs with different diameters and lengths. The average diameter and length of SCFs were 259.2 nm and 11.7 μm in SCF1 suspensions, 248.5 nm and 6.7 μm in SCF2 suspensions, and 183.0 nm and 13.7 μm in SCF3 suspensions, respectively. The results of pulmonary inflammation and recovery following intratracheal instillation with SCFs at doses of 0.25, 0.5, or 1.0 mg/kg showed that the pulmonary toxicity of SCFs was SCF3 > SCF1 > SCF2. These results suggest that SCF diameter and length are most likely important contributing factors associated with lung SCF clearance, pulmonary inflammation, and recovery. Furthermore, SCFs are less pulmonary toxic than bent multi-walled carbon nanotubes. Cell viability, pro-inflammatory cytokine and intracellular reactive oxygen species productions, morphological changes, gene expression profiling in NR8383 rat alveolar macrophage cells showed that the cytotoxic potency of SCFs is: SCF3 > SCF1 > SCF2. These results showed that SCFs with small diameters had high cytotoxicity, and SCFs with short lengths had low cytotoxicity. We conclude that pulmonary toxicity and cytotoxicity are associated with the diameter and length distributions of SCFs. In addition, a standard battery for genotoxicity testing, namely the Ames test, an in vitro chromosomal aberration test, and a mammalian erythrocyte micronucleus test, demonstrated that the three types of SCFs did not induce genotoxicity. Our findings provide new evidence for evaluating the potential toxicity of not only SCFs used in this study but also various SCFs which differ depending on the manufacturing processes or physicochemical properties.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan.
| | - Sawae Obara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
16
|
Keshavan S, Gupta G, Martin S, Fadeel B. Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils. Nanotoxicology 2021; 15:1125-1150. [PMID: 34657549 DOI: 10.1080/17435390.2021.1988171] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Carbon nanotubes (CNTs) have been extensively investigated, and several studies have shown that multi-walled CNTs can trigger inflammation and fibrosis in animal models. However, while neutrophils are involved in inflammation, most in vitro studies have addressed macrophages. Here we explored the impact of three MWCNTs with varying morphology (i.e. long and rigid versus short and/or tangled) on primary human macrophages and macrophage-differentiated THP-1 cells versus primary human neutrophils and neutrophil-differentiated HL-60 cells. We found that long and rigid MWCNTs triggered caspase-dependent cell death in macrophages, accompanied by NLRP3 inflammasome activation and gasdermin D (GSDMD)-mediated release of pro-inflammatory IL-1β. The release of IL-1β was suppressed by disulfiram, an FDA-approved drug known to act as an inhibitor of membrane pore formation by GSDMD. Evidence of autophagic cell death was noted in macrophages exposed to higher concentrations of the long and rigid MWCNTs. Furthermore, lysosomal damage with cytosolic release of cathepsin B was observed in macrophages exposed to the latter MWCNTs. On the other hand, there was little evidence of uptake of MWCNTs in neutrophils and the cells failed to undergo MWCNT-triggered cell death. Our studies have demonstrated that long and rigid MWCNTs trigger pyroptosis in human macrophages.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Govind Gupta
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastin Martin
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Wils RS, Jacobsen NR, Di Ianni E, Roursgaard M, Møller P. Reactive oxygen species production, genotoxicity and telomere length in FE1-Muta™Mouse lung epithelial cells exposed to carbon nanotubes. Nanotoxicology 2021; 15:661-672. [PMID: 33899660 DOI: 10.1080/17435390.2021.1910359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbon nanotubes (CNTs) are fiber-like nanomaterials, which are used in various applications with possible exposure to humans. The genotoxicity and carcinogenic potential of CNTs remain to be fully understood. This study assessed the genotoxicity of three different multi-walled carbon nanotubes (MWCNTs) (MWCNT-7, NM-401 and NM-403) and one single-walled carbon nanotube (SWCNT) (NM-411) in FE1-Muta™Mouse lung epithelial (MML) cells using the alkaline comet assay. With the 2',7'-dichlorodihydrofluorescein diacetate fluorescent probe, we assessed the effect of CNT-exposure on the intracellular production of reactive oxygen species (ROS). We measured the effect of a 10-week CNT exposure on telomere length using quantitative PCR. Two of the included MWCNTs (NM-401 and MWCNT-7) and the SWCNT (NM-411) caused a significant increase in the level of DNA damage at concentrations up to 40 µg/ml (all concentrations pooled, p < 0.05), but no concentration-response relationships were found. All of the CNTs caused an increase in intracellular ROS production compared to unexposed cells (ptrend < 0.05). Results from the long-term exposure showed longer telomere length in cells exposed to MWCNTs compared to unexposed cells (p < 0.01). In conclusion, our results indicated that the included CNTs cause ROS production and DNA strand breaks in FE1-MML cells. Moreover, the MWCNTs, but not the SWCNT, had an impact on telomere length in a long-term exposure scenario.
Collapse
Affiliation(s)
- Regitze Sølling Wils
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen K, Denmark.,The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | | | - Emilio Di Ianni
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Martin Roursgaard
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen K, Denmark
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen K, Denmark
| |
Collapse
|
18
|
Barbarino M, Giordano A. Assessment of the Carcinogenicity of Carbon Nanotubes in the Respiratory System. Cancers (Basel) 2021; 13:cancers13061318. [PMID: 33804168 PMCID: PMC7998467 DOI: 10.3390/cancers13061318] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
In 2014, the International Agency for Research on Cancer (IARC) classified the first type of carbon nanotubes (CNTs) as possibly carcinogenic to humans, while in the case of other CNTs, it was not possible to ascertain their toxicity due to lack of evidence. Moreover, the physicochemical heterogeneity of this group of substances hamper any generalization on their toxicity. Here, we review the recent relevant toxicity studies produced after the IARC meeting in 2014 on an homogeneous group of CNTs, highlighting the molecular alterations that are relevant for the onset of mesothelioma. Methods: The literature was searched on PubMed and Web of Science for the period 2015-2020, using different combinations keywords. Only data on normal cells of the respiratory system after exposure to fully characterized CNTs for their physico-chemical characteristics were included. Recent studies indicate that CNTs induce a sustained inflammatory response, oxidative stress, fibrosis and histological alterations. The development of mesothelial hyperplasia, mesothelioma, and lungs tumors have been also described in vivo. The data support a strong inflammatory potential of CNTs, similar to that of asbestos, and provide evidence that CNTs exposure led to molecular alterations known to have a key role in mesothelioma onset. These evidences call for an urgent improvement of studies on exposed human populations and adequate systems for monitoring the health of workers exposed to this putative carcinogen.
Collapse
Affiliation(s)
- Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|