1
|
Vermillion MS, Saari N, Bray M, Nelson AM, Bullard RL, Rudolph K, Gigliotti AP, Brendler J, Jantzi J, Kuehl PJ, McDonald JD, Burgert ME, Weber W, Sucoloski S, Behm DJ. Effect of TRPV4 Antagonist GSK2798745 on Chlorine Gas-Induced Acute Lung Injury in a Swine Model. Int J Mol Sci 2024; 25:3949. [PMID: 38612759 PMCID: PMC11011849 DOI: 10.3390/ijms25073949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
As a regulator of alveolo-capillary barrier integrity, Transient Receptor Potential Vanilloid 4 (TRPV4) antagonism represents a promising strategy for reducing pulmonary edema secondary to chemical inhalation. In an experimental model of acute lung injury induced by exposure of anesthetized swine to chlorine gas by mechanical ventilation, the dose-dependent effects of TRPV4 inhibitor GSK2798745 were evaluated. Pulmonary function and oxygenation were measured hourly; airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, and histopathology were assessed 24 h post-exposure. Exposure to 240 parts per million (ppm) chlorine gas for ≥50 min resulted in acute lung injury characterized by sustained changes in the ratio of partial pressure of oxygen in arterial blood to the fraction of inspiratory oxygen concentration (PaO2/FiO2), oxygenation index, peak inspiratory pressure, dynamic lung compliance, and respiratory system resistance over 24 h. Chlorine exposure also heightened airway response to methacholine and increased wet-to-dry lung weight ratios at 24 h. Following 55-min chlorine gas exposure, GSK2798745 marginally improved PaO2/FiO2, but did not impact lung function, airway responsiveness, wet-to-dry lung weight ratios, airway inflammation, or histopathology. In summary, in this swine model of chlorine gas-induced acute lung injury, GSK2798745 did not demonstrate a clinically relevant improvement of key disease endpoints.
Collapse
Affiliation(s)
- Meghan S. Vermillion
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Nathan Saari
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Mathieu Bray
- GSK, Collegeville, PA 19426, USA; (M.B.); (S.S.); (D.J.B.)
| | - Andrew M. Nelson
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Robert L. Bullard
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Karin Rudolph
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Andrew P. Gigliotti
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Jeffrey Brendler
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Jacob Jantzi
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | - Jacob D. McDonald
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | | | - Waylon Weber
- Lovelace Biomedical Research Institute, Albuquerque, NM 87108, USA; (N.S.); (A.M.N.); (R.L.B.); (K.R.); (A.P.G.); (J.B.); (J.J.); (P.J.K.); (J.D.M.); (W.W.)
| | | | - David J. Behm
- GSK, Collegeville, PA 19426, USA; (M.B.); (S.S.); (D.J.B.)
| |
Collapse
|
2
|
Achanta S, Gentile MA, Albert CJ, Schulte KA, Pantazides BG, Crow BS, Quiñones-González J, Perez JW, Ford DA, Patel RP, Blake TA, Gunn MD, Jordt SE. Recapitulation of human pathophysiology and identification of forensic biomarkers in a translational model of chlorine inhalation injury. Am J Physiol Lung Cell Mol Physiol 2024; 326:L482-L495. [PMID: 38318664 PMCID: PMC11281795 DOI: 10.1152/ajplung.00162.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/07/2024] Open
Abstract
Chlorine gas (Cl2) has been repeatedly used as a chemical weapon, first in World War I and most recently in Syria. Life-threatening Cl2 exposures frequently occur in domestic and occupational environments, and in transportation accidents. Modeling the human etiology of Cl2-induced acute lung injury (ALI), forensic biomarkers, and targeted countermeasures development have been hampered by inadequate large animal models. The objective of this study was to develop a translational model of Cl2-induced ALI in swine to understand toxico-pathophysiology and evaluate whether it is suitable for screening potential medical countermeasures and to identify biomarkers useful for forensic analysis. Specific pathogen-free Yorkshire swine (30-40 kg) of either sex were exposed to Cl2 (≤240 ppm for 1 h) or filtered air under anesthesia and controlled mechanical ventilation. Exposure to Cl2 resulted in severe hypoxia and hypoxemia, increased airway resistance and peak inspiratory pressure, and decreased dynamic lung compliance. Cl2 exposure resulted in increased total leucocyte and neutrophil counts in bronchoalveolar lavage fluid, vascular leakage, and pulmonary edema compared with the air-exposed group. The model recapitulated all three key histopathological features of human ALI, such as neutrophilic alveolitis, deposition of hyaline membranes, and formation of microthrombi. Free and lipid-bound 2-chlorofatty acids and chlorotyrosine-modified proteins (3-chloro-l-tyrosine and 3,5-dichloro-l-tyrosine) were detected in plasma and lung tissue after Cl2 exposure. In this study, we developed a translational swine model that recapitulates key features of human Cl2 inhalation injury and is suitable for testing medical countermeasures, and validated chlorinated fatty acids and protein adducts as biomarkers of Cl2 inhalation.NEW & NOTEWORTHY We established a swine model of chlorine gas-induced acute lung injury that exhibits several features of human acute lung injury and is suitable for screening potential medical countermeasures. We validated chlorinated fatty acids and protein adducts in plasma and lung samples as forensic biomarkers of chlorine inhalation.
Collapse
Affiliation(s)
- Satyanarayana Achanta
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Michael A Gentile
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Carolyn J Albert
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, United States
| | - Kevin A Schulte
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, United States
| | - Brooke G Pantazides
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Brian S Crow
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Jennifer Quiñones-González
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Jonas W Perez
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University, St. Louis, Missouri, United States
| | - Rakesh P Patel
- Center for Free Radical Biology and Lung Injury and Repair Center, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Thomas A Blake
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States
| | - Michael D Gunn
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States
| | - Sven E Jordt
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, United States
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, United States
- Integrated Toxicology & Environmental Health Program, Duke University, Durham, North Carolina, United States
| |
Collapse
|
3
|
Hemström P, Jugg B, Watkins R, Jonasson S, Elfsmark L, Rutter S, Åstot C, Lindén P. Phospholipid chlorohydrins as chlorine exposure biomarkers in a large animal model. Toxicol Lett 2024; 391:32-38. [PMID: 38048885 DOI: 10.1016/j.toxlet.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Chlorine is a toxic industrial chemical that has been used as a chemical weapon in recent armed conflicts. Confirming human exposure to chlorine has proven challenging, and there is currently no established method for analyzing human biomedical samples to unambiguously verify chlorine exposure. In this study, two chlorine-specific biomarkers: palmitoyl-oleoyl phosphatidylglycerol chlorohydrin (POPG-HOCl) and the lipid derivative oleoyl ethanolamide chlorohydrin (OEA-HOCl) are shown in bronchoalveolar lavage fluid (BALF) samples from spontaneously breathing pigs after chlorine exposure. These biomarkers are formed by the chemical reaction of chlorine with unsaturated phospholipids found in the pulmonary surfactant, which is present at the gas-liquid interface within the lung alveoli. Our results strongly suggest that lipid chlorohydrins are promising candidate biomarkers in the development of a verification method for chlorine exposure. The establishment of verified methods capable of confirming the illicit use of toxic industrial chemicals is crucial for upholding the principles of the Chemical Weapons Convention (CWC) and enforcing the ban on chemical weapons. This study represents the first published dataset in BALF revealing chlorine biomarkers detected in a large animal. Furthermore, these biomarkers are distinct in that they originate from molecular chlorine rather than hypochlorous acid.
Collapse
Affiliation(s)
- Petrus Hemström
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | | | | | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | | | - Crister Åstot
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Pernilla Lindén
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
4
|
Gustafson Å, Elfsmark L, Karlsson T, Jonasson S. N-acetyl cysteine mitigates lung damage and inflammation after chlorine exposure in vivo and ex vivo. Toxicol Appl Pharmacol 2023; 479:116714. [PMID: 37820773 DOI: 10.1016/j.taap.2023.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The objective of this study was to explore the effects of antioxidant treatments, specifically N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA), in a mouse model of chlorine (Cl2)-induced lung injury. Additionally, the study aimed to investigate the utility of pig precision-cut lung slices (PCLS) as an ex vivo alternative for studying the short-term effects of Cl2 exposure and evaluating antioxidant treatments. The toxicological responses were analyzed in Cl2-exposed mice (inflammation, airway hyperresponsiveness (AHR)) and PCLS (viability, cytotoxicity, inflammatory mediators). Airways contractions were assessed using a small ventilator for mice and electric-field stimulation (EFS) for PCLS. Antioxidant treatments were administered to evaluate their effects. In Cl2-exposed mice, NAC treatment did not alleviate AHR, but it did reduce the number of neutrophils in bronchoalveolar lavage fluid and inflammatory mediators in lung tissue. In PCLS, exposure to Cl2 resulted in concentration-dependent toxicity, impairing the lung tissue's ability to respond to EFS-stimulation. NAC treatment increased viability, mitigated the toxic responses caused by Cl2 exposure, and maintained contractility comparable to unexposed controls. Interestingly, NACA did not provide any additional treatment effect beyond NAC in both models. In conclusion, the establishment of a pig model for Cl2-induced lung damage supports further investigation of NAC as a potential treatment. However, the lack of protective effects on AHR after NAC treatment in mice suggests that NAC alone may not be sufficient as a complete treatment for Cl2 injuries. Optimization of existing medications with a polypharmacy approach may be more successful in addressing the complex sequelae of Cl2-induced lung injury.
Collapse
Affiliation(s)
- Åsa Gustafson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Terese Karlsson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
5
|
Zhao CQ, Wang C, Liu MM, Cao M, Peng J, Kong DQ, Ren XT, Liu R, Hai CX, Zhang XD. Single-cell transcriptomes reveal heterogeneity of chlorine-induced mice acute lung injury and the inhibitory effect of pentoxifylline on ferroptosis. Sci Rep 2023; 13:6833. [PMID: 37100790 PMCID: PMC10131515 DOI: 10.1038/s41598-023-32093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 04/28/2023] Open
Abstract
To investigate the effect of pentoxifylline (PTX) on Chlorine (Cl2)-induced acute lung injury (ALI) by single-cell RNA sequencing (scRNA-seq). Female BALB/c mice were exposed to Cl2 at 400 ppm for 15 min. H&E staining was used to observe the degree of lung injury. scRNA-seq was conducted to analysis of normal and Cl2-exposed mice lung tissues. Immunofluorescence was used to observe genes of interest. Thirty-two mice were randomly divided into four groups: Control, Cl2, Cl2+Fer-1, Cl2+PTX. TEM, WB and ELISA were used to detect ferroptosis-related indicators. The 5, 8, 10, 12, 16, 20 clusters were epithelial cells and 4, 15, 18, 19, 21 clusters were endothelial cells. Pseudo-time analysis revealed the differentiation trajectory of epithelial cells and key regulatory genes (Gclc, Bpifa1, Dnah5 and Dnah9) during the process of injury. Cell-cell communication analysis identified several important receptor-ligand complexes (Nrp1-Vegfa, Nrp2-Vegfa, Flt1-Vegfa and Flt4-Vegfa). Ferroptosis were found up-regulated in epithelial and endothelial cells by GSVA analysis. Highly expressed genes to which closely related ferroptosis were found by SCENIC analysis. PTX could significantly decrease the levels of MDA and abnormal high expression of solute carrier family 7 member 11 (SLC7A11, the key transporter of cystine) as well as increase the expression of GSH/GSSG and glutathione peroxidase 4 (GPX4) (p < 0.05). This study revealed novel molecular features of Cl2-induced ALI. PTX may be a potential specific drug by inhibiting the process of ferroptosis in epithelial and endothelial cells.
Collapse
Affiliation(s)
- Chen-Qian Zhao
- Department of Medical Experiment Center, Shaanxi University of Chinese Medicine, Xi'an, 712046, Xianyang, China
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Chong Wang
- Department of Medical Experiment Center, Shaanxi University of Chinese Medicine, Xi'an, 712046, Xianyang, China
| | - Meng-Meng Liu
- Department of Health Service, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Meng Cao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Jie Peng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - De-Qin Kong
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Xiao-Ting Ren
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China
| | - Chun-Xu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China.
| | - Xiao-di Zhang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Liu MM, Liu JZ, Zhao CQ, Guo P, Wang Z, Wu H, Yu W, Liu R, Hai CX, Zhang XD. Protective effects of pentoxifylline against chlorine-induced acute lung injury in rats. BMC Pharmacol Toxicol 2023; 24:12. [PMID: 36850013 PMCID: PMC9969370 DOI: 10.1186/s40360-023-00645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/19/2023] [Indexed: 03/01/2023] Open
Abstract
OBJECTIVE Chlorine is a chemical threat agent that can be harmful to humans. Inhalation of high levels of chlorine can lead to acute lung injury (ALI). Currently, there is no satisfactory treatment, and effective antidote is urgently needed. Pentoxifylline (PTX), a methylxanthine derivative and nonspecific phosphodiesterase inhibitor, is widely used for the treatment of vascular disorders. The present study was aimed to investigate the inhibitory effects of PTX on chlorine-induced ALI in rats. METHODS Adult male Sprague-Dawley rats were exposed to 400 ppm Cl2 for 5 min. The histopathological examination was carried out and intracellular reactive oxygen species (ROS) levels were measured by the confocal laser scanning system. Subsequently, to evaluate the effect of PTX, a dose of 100 mg/kg was administered. The activities of superoxide dismutase (SOD) and the contents of malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG) and lactate dehydrogenase (LDH) were determined by using commercial kits according to the manufacturer's instructions. Western blot assay was used to detect the protein expressions of SOD1, SOD2, catalase (CAT), hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), occludin, E-cadherin, bcl-xl, LC 3, Beclin 1, PTEN-induced putative kinase 1 (PINK 1) and Parkin. RESULTS The histopathological examination demonstrated that chlorine could destroy the lung structure with hemorrhage, alveolar collapse, and inflammatory infiltration. ROS accumulation was significantly higher in the lungs of rats suffering from inhaling chlorine (P<0.05). PTX markedly reduced concentrations of MAD and GSSG, while increased GSH (P<0.05). The protein expression levels of SOD1 and CAT also decreased (P<0.05). Furthermore, the activity of LDH in rats treated with PTX was significantly decreased compared to those of non-treated group (P<0.05). Additionally, the results also showed that PTX exerted an inhibition effect on protein expressions of HIF-1α, VEGF and occludin, and increased the level of E-cadherin (P<0.05). While the up-regulation of Beclin 1, LC 3II/I, Bcl-xl, and Parkin both in the lung tissues and mitochondria, were found in PTX treated rats (P<0.05). The other protein levels were decreased when treated with PTX (P<0.05). CONCLUSION PTX could ameliorate chlorine-induced lung injury via inhibition effects on oxidative stress, hypoxia and autophagy, thus suggesting that PTX could serve as a potential therapeutic approach for ALI.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Department of Health Service, Logistics College of Chinese People's Armed Police Force, Tianjin, 300309, China. .,Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jiang-Zheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen-Qian Zhao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Guo
- Department of Health Service, Logistics College of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Zhao Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Chun-Xu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-di Zhang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Paleiron N, Karkowski L, Bronstein AR, Amabile JC, Delarbre D, Mullot JU, Cazoulat A, Entine F, le Floch Brocquevieille H, Dorandeu F. [The role of the pulmonologist in an armed conflict]. Rev Mal Respir 2023; 40:156-168. [PMID: 36690507 DOI: 10.1016/j.rmr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Recent news points to the eventuality of an armed conflict on the national territory. STATE OF THE ART In this situation, pulmonologists will in all likelihood have a major role to assume in caring for the injured, especially insofar as chest damage is a major cause of patient death. PERSPECTIVES The main injuries that pulmonologists may be called upon to treat stem not only from explosions, but also from chemical, biological and nuclear hazards. In this article, relevant organizational and pedagogical aspects are addressed. Since exhaustiveness on this subject is unattainable, we are proposing training on specific subjects for interested practitioners. CONCLUSION The resilience of the French health system in a situation of armed conflict depends on the active participation of all concerned parties. With this in mind, it is of prime importance that the pneumological community be sensitized to the potential predictable severity of war-related injuries.
Collapse
Affiliation(s)
- N Paleiron
- HIA Sainte-Anne, service de pneumologie, Toulon, France.
| | - L Karkowski
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - A-R Bronstein
- HIA Sainte-Anne, service de pneumologie, Toulon, France
| | - J-C Amabile
- Service de protection radiologique des armées, Paris, France
| | - D Delarbre
- HIA Sainte-Anne, service de médecine interne-maladies infectieuses, Toulon, France
| | - J-U Mullot
- Service de santé des armées, Paris, France
| | - A Cazoulat
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | - F Entine
- Service de santé des armées, service médical de la base opérationnelle de l'Île Longue, Lanveoc Poulmic, France
| | | | - F Dorandeu
- Service de santé des armées, Institut de recherche biomédicale des armées, Brétigny, France
| |
Collapse
|
8
|
Clark GC, Elfsmark L, Armstrong S, Essex-Lopresti A, Gustafsson Å, Ryan Y, Moore K, Paszkiewicz K, Green AC, Hiscox JA, David J, Jonasson S. From "crisis to recovery": A complete insight into the mechanisms of chlorine injury in the lung. Life Sci 2022; 312:121252. [PMID: 36460096 DOI: 10.1016/j.lfs.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Chlorine (Cl2) gas is a toxic industrial chemical (TIC) that poses a hazard to human health following accidental and/or intentional (e.g. terrorist) release. By using a murine model of sub-lethal Cl2 exposure we have examined the airway hyper responsiveness, cellular infiltrates, transcriptomic and proteomic responses of the lung. In the "crisis" phase at 2 h and 6 h there is a significant decreases in leukocytes within bronchoalveolar lavage fluid accompanied by an upregulation within the proteome of immune pathways ultimately resulting in neutrophil influx at 24 h. A flip towards "repair" in the transcriptome and proteome occurs at 24 h, neutrophil influx and an associated drop in the lung function persisting until 14 d post-exposure and subsequent "recovery" after 28 days. Collectively, this research provides new insights into the mechanisms of damage, early global responses and processes of repair induced in the lung following the inhalation of Cl2.
Collapse
Affiliation(s)
- Graeme C Clark
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK; Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK.
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Stuart Armstrong
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Angela Essex-Lopresti
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Åsa Gustafsson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Yan Ryan
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Karen Moore
- University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Konrad Paszkiewicz
- University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - A Christopher Green
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Julian A Hiscox
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Jonathan David
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
9
|
Schlör S, Pflaum M, Höffler K, Kühn C, Haverich A, Wiegmann B. Towards Biohybrid Lung Development: Establishment of a Porcine In Vitro Model. MEMBRANES 2022; 12:membranes12070687. [PMID: 35877890 PMCID: PMC9325277 DOI: 10.3390/membranes12070687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
Lung transplantation (LTx) is the only curative therapy option for patients with end-stage lung diseases, though only available for chosen patients. To provide an alternative treatment option to LTx, we aim for the development of an implantable biohybrid lung (BHL) based on hollow fiber membrane (HFM) technology used in extracorporeal membrane oxygenators. Crucial for long-lasting BHL durability is complete hemocompatibility of all blood contacting surfaces, which can be achieved by their endothelialization. In continuation to successful in vitro investigations using human endothelial cells (ECs), indicating general feasibility, the appropriate porcine in vivo model needs to be prepared and established to fill the translational data gap prior to patient’s application. Therefore, isolation of porcine ECs from carotid arteries (pCECs) was established. Following, pCECs were used for HFM endothelialization and examined under static and dynamic conditions using cell medium or heparinized blood, to assess their proliferation capacity, flow resistance and activation state, especially under clinically relevant conditions. Additionally, comparative hemocompatibility tests between native and endothelialized HFMs were performed. Overall, pure pCECs formed a viable and confluent monolayer, which resisted applied flow conditions, in particular due to physiological extracellular matrix synthesis. Additionally, pCECs remained the non-inflammatory and anti-thrombogenic status, significantly improving the hemocompatibility of endothelialized HFMs. Finally, as relevant for reliable porcine to human translation, pCECs behaved in the same way as human ECs. Concluding, generated in vitro data justify further steps towards pre-clinical BHL examination, in particular BHL application to porcine lung injury models, reflecting the clinical scenario with end-stage lung-diseased patients.
Collapse
Affiliation(s)
- Simon Schlör
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (S.S.); (M.P.); (K.H.); (C.K.); (A.H.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Michael Pflaum
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (S.S.); (M.P.); (K.H.); (C.K.); (A.H.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Klaus Höffler
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (S.S.); (M.P.); (K.H.); (C.K.); (A.H.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Christian Kühn
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (S.S.); (M.P.); (K.H.); (C.K.); (A.H.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (S.S.); (M.P.); (K.H.); (C.K.); (A.H.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (S.S.); (M.P.); (K.H.); (C.K.); (A.H.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
- German Center for Lung Research (DZL), Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|