1
|
Sun J, Xing F, Braun J, Traub F, Rommens PM, Xiang Z, Ritz U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:ijms222111354. [PMID: 34768789 PMCID: PMC8584114 DOI: 10.3390/ijms222111354] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Bone cancer including primary bone cancer and metastatic bone cancer, remains a challenge claiming millions of lives and affecting the life quality of survivors. Conventional treatments of bone cancer include wide surgical resection, radiotherapy, and chemotherapy. However, some bone cancer cells may remain or recur in the local area after resection, some are highly resistant to chemotherapy, and some are insensitive to radiotherapy. Phototherapy (PT) including photodynamic therapy (PDT) and photothermal therapy (PTT), is a clinically approved, minimally invasive, and highly selective treatment, and has been widely reported for cancer therapy. Under the irradiation of light of a specific wavelength, the photosensitizer (PS) in PDT can cause the increase of intracellular ROS and the photothermal agent (PTA) in PTT can induce photothermal conversion, leading to the tumoricidal effects. In this review, the progress of PT applications in the treatment of bone cancer has been outlined and summarized, and some envisioned challenges and future perspectives have been mentioned. This review provides the current state of the art regarding PDT and PTT in bone cancer and inspiration for future studies on PT.
Collapse
Affiliation(s)
- Jiachen Sun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
| | - Joy Braun
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Frank Traub
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Pol Maria Rommens
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China;
- Correspondence: (Z.X.); (U.R.)
| | - Ulrike Ritz
- Biomatics Group, Department of Orthopaedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (J.S.); (J.B.); (F.T.); (P.M.R.)
- Correspondence: (Z.X.); (U.R.)
| |
Collapse
|
2
|
van de Venter M, Didloff J, Reddy S, Swanepoel B, Govender S, Dambuza NS, Williams S, Koekemoer TC, Venables L. Wild-Type Zebrafish ( Danio rerio) Larvae as a Vertebrate Model for Diabetes and Comorbidities: A Review. Animals (Basel) 2020; 11:E54. [PMID: 33396883 PMCID: PMC7824285 DOI: 10.3390/ani11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish have become a popular alternative to higher animals in biomedical and pharmaceutical research. The development of stable mutant lines to model target specific aspects of many diseases, including diabetes, is well reported. However, these mutant lines are much more costly and challenging to maintain than wild-type zebrafish and are simply not an option for many research facilities. As an alternative to address the disadvantages of advanced mutant lines, wild-type larvae may represent a suitable option. In this review, we evaluate organ development in zebrafish larvae and discuss established methods that use wild-type zebrafish larvae up to seven days post fertilization to test for potential drug candidates for diabetes and its commonly associated conditions of oxidative stress and inflammation. This provides an up to date overview of the relevance of wild-type zebrafish larvae as a vertebrate antidiabetic model and confidence as an alternative tool for preclinical studies. We highlight the advantages and disadvantages of established methods and suggest recommendations for future developments to promote the use of zebrafish, specifically larvae, rather than higher animals in the early phase of antidiabetic drug discovery.
Collapse
Affiliation(s)
- Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Jenske Didloff
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Shanika Reddy
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Sharlene Govender
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Ntokozo Shirley Dambuza
- Department of Pharmacy, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa;
| | - Saralene Williams
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Trevor Craig Koekemoer
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; (J.D.); (S.R.); (B.S.); (S.G.); (S.W.); (T.C.K.); (L.V.)
| |
Collapse
|
3
|
Yang T, Yang H, Fan Y, Li B, Hou H. Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin. Int J Biol Macromol 2018; 118:124-131. [DOI: 10.1016/j.ijbiomac.2018.06.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
|
4
|
da Cunha AR, Duarte EL, Stassen H, Lamy MT, Coutinho K. Experimental and theoretical studies of emodin interacting with a lipid bilayer of DMPC. Biophys Rev 2017; 9:729-745. [PMID: 28940105 DOI: 10.1007/s12551-017-0323-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
Emodin is one of the most abundant anthraquinone derivatives found in nature. It is the active principle of some traditional herbal medicines with known biological activities. In this work, we combined experimental and theoretical studies to reveal information about location, orientation, interaction and perturbing effects of Emodin on lipid bilayers, where we have taken into account the neutral form of the Emodin (EMH) and its anionic/deprotonated form (EM-). Using both UV/Visible spectrophotometric techniques and molecular dynamics (MD) simulations, we showed that both EMH and EM- are located in a lipid membrane. Additionally, using MD simulations, we revealed that both forms of Emodin are very close to glycerol groups of the lipid molecules, with the EMH inserted more deeply into the bilayer and more disoriented relative to the normal of the membrane when compared with the EM-, which is more exposed to interfacial water. Analysis of several structural properties of acyl chains of the lipids in a hydrated pure DMPC bilayer and in the presence of Emodin revealed that both EMH and EM- affect the lipid bilayer, resulting in a remarkable disorder of the bilayer in the vicinity of the Emodin. However, the disorder caused by EMH is weaker than that caused by EM-. Our results suggest that these disorders caused by Emodin might lead to distinct effects on lipid bilayers including its disruption which are reported in the literature.
Collapse
Affiliation(s)
- Antonio R da Cunha
- Universidade Federal do Maranhão, UFMA, Campus Balsas, Maranhão, 06500-000, Brazil.,Instituto de Física da Universidade de São Paulo, 05508-090, Cidade Universitária, São Paulo, Brazil
| | - Evandro L Duarte
- Instituto de Física da Universidade de São Paulo, 05508-090, Cidade Universitária, São Paulo, Brazil
| | - Hubert Stassen
- Grupo de Química Teórica, Instituto de Química, UFRGS, Av. Bento Gonçalves 9500, Porto Alegre, 91540-000, Brazil
| | - M Teresa Lamy
- Instituto de Física da Universidade de São Paulo, 05508-090, Cidade Universitária, São Paulo, Brazil
| | - Kaline Coutinho
- Instituto de Física da Universidade de São Paulo, 05508-090, Cidade Universitária, São Paulo, Brazil.
| |
Collapse
|
5
|
Tu P, Huang Q, Ou Y, Du X, Li K, Tao Y, Yin H. Aloe-emodin-mediated photodynamic therapy induces autophagy and apoptosis in human osteosarcoma cell line MG‑63 through the ROS/JNK signaling pathway. Oncol Rep 2016; 35:3209-15. [PMID: 27035222 PMCID: PMC4872276 DOI: 10.3892/or.2016.4703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/12/2016] [Indexed: 12/31/2022] Open
Abstract
The present study was carried out to investigate the effect and mechanisms of aloe-emodin (AE)-mediated photodynamic therapy (AE-PDT) on the human osteosarcoma cell line MG-63. After treatment with AE-PDT, the human osteosarcoma cell line MG-63 was tested for levels of viability, autophagy, reactive oxygen species (ROS) and apoptosis and changes in cell morphology with the Cell Counting Kit-8 (CCK-8), monodansylcadaverine (MDC) and Hoechst staining and transmission electron microscopy. The expression of proteins including LC-3, cleaved caspase-3, Beclin-1, Bcl-2, p-JNK, t-JNK and β-actin was examined with western blotting. AE-PDT significantly inhibited the viability of the MG-63 cells in an AE-concentration- and PDT energy density-dependent manner. Autophagy and apoptosis of MG-63 cells was substantially promoted in the AE-PDT group compared to the control group, the AE alone group and the light emitting diode (LED) alone group. Inhibition of autophagy by 3-meth-yladenine (3-MA) (5 mM) and chloroquine (CQ) (15 µM) significantly promoted the apoptosis rate and improved the sensitivity of the MG-63 cells to AE-PDT. AE-PDT was found to induce the expression of ROS and p-JNK. ROS scavenger, N-acetyl-L-cysteine (NAC, 5 mM), was able to hinder the autophagy, apoptosis and phosphorylation of JNK, and JNK inhibitor (SP600125, 10 µM) significantly inhibited the autophagy and apoptosis, and attenuated the sensitivity of MG63 cells to AE-PDT. In conclusion, AE-PDT induced the autophagy and apoptosis of human osteosarcoma cell line MG-63 through the activation of the ROS-JNK signaling pathway. Autophagy may play a protective role during the early stage following treatment of AE-PDT.
Collapse
Affiliation(s)
- Pinghua Tu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Qiu Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yunsheng Ou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Xing Du
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Kaiting Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yong Tao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Hang Yin
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
6
|
Li M, Zhang Q, Wang JR, Mei X. Mechanochromism triggered fluorescent color switching among polymorphs of a natural fluorescence pigment. Chem Commun (Camb) 2016; 52:11288-11291. [DOI: 10.1039/c6cc04958c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The solid-state study of emodin demonstrates the feasibility of building new MCL systems via controlling the solid-state transition of natural fluorescent dyes.
Collapse
Affiliation(s)
- Meiqi Li
- Pharmaceutical Analytical & Solid-State Chemistry Research Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Qi Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Jian-Rong Wang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Xuefeng Mei
- Pharmaceutical Analytical & Solid-State Chemistry Research Center
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| |
Collapse
|
7
|
Qu P, Lu H, Ding X, Tao Y, Lu Z. Influences of urea and guanidine hydrochloride on the interaction of 6-thioguanine with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 74:1224-1228. [PMID: 19875331 DOI: 10.1016/j.saa.2009.09.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Revised: 08/11/2009] [Accepted: 09/24/2009] [Indexed: 05/28/2023]
Abstract
The interaction of 6-thioguanine (6-TG) and bovine serum albumin (BSA) in the absence and presence of denaturant (urea and Guanidine hydrochloride) was investigated by fluorescence spectroscopic techniques. Changes of fluorescence intensity both in F(304) and in F(348) of BSA reflected increasing participation of tyrosine fluorescence in the total emission with increasing denaturant, which indicated that energy transfer from tyrosyl residues to tryptophanyl residues became less efficient in the denatured tertiary protein structure. The quenching effects of 6-TG were shown not only on the native but also on the unfolded form of BSA. The quenching constants and binding constants were calculated from the fluorescence spectra of the BSA/6-TG complex both in the absence and presence of the denaturant. The data suggested that the quenching constants and binding constants of 6-TG for BSA decreased with increasing concentration of denaturant. The spectroscopic analysis also showed antidenaturant properties of 6-TG under both denaturant conditions.
Collapse
Affiliation(s)
- Peng Qu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, PR China
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Electronic states of emodin and its conjugate base. Synchrotron linear dichroism spectroscopy and quantum chemical calculations. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|