1
|
Zhen Q, Zhang Y, Gao L, Wang R, Chu W, Zhao X, Li Z, Li H, Zhang B, Lv B, Liu J. MiR-519d-3p enhances the sensitivity of non-small-cell lung cancer to tyrosine kinase inhibitors. Mamm Genome 2021; 32:508-516. [PMID: 34586488 DOI: 10.1007/s00335-021-09919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer mortality worldwide. Tyrosine kinase inhibitors (TKIs) are currently the most effective chemotherapy for NSCLC. However, most cancer patients develop TKI resistance at tumor relapse stage. We firstly measured the expression change of miR-519d-3p in TKI resistance NSCLC cells. We then ectopically expressed miR-519-3p in TKI resistant cells to study its functional impact on cell proliferation, migration, invasion and cell sensitivity to gefitinib. The downstream target of miR-519-3p was identified by bioinformatics and validated in luciferase reporter assay and western blotting analysis. We also studied the reversing effect of the candidate target in NSCLC cells expressing miR-519d-3p. Lastly, we compared the miR-519d-3p level in NSCLC patients with good or poor response to gefitinib. miR-519d-3p level was downregulated in TKI resistant NSCLC cells. The restoration of miR-519d-3p in these NSCLC cells inhibited cell proliferation, invasion and migration; enhanced cell sensitivity to gefitinib. EPAS1 was identified and validated as downstream target of miR-519d-3p. Co-expressing EPAS1 antagonized the inhibitory effect of miR-519d-3p on NSCLC cells. MiR-519d-3p was downregulated in NSCLC patients with poor response to gefitinib. Targeting miR-519d-3p/EPAS1 axis may provide alternative treatment for TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Qiang Zhen
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Yaxiao Zhang
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China.
| | - Lina Gao
- Central Supply Room, Hebei General Hospital, No. 348 Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Renfeng Wang
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Weiwei Chu
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Xiaojian Zhao
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Zhe Li
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Huixian Li
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Bing Zhang
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Baolei Lv
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| | - Jiabao Liu
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, 365 Jianhuanan Street, Yuhua District, Shijiazhuang, 050031, Hebei, China
| |
Collapse
|
2
|
Zhen Q, Zhang Y, Gao L, Wang R, Chu W, Zhao X, Li Z, Li H, Zhang B, Lv B, Liu J. EPAS1 promotes peritoneal carcinomatosis of non-small-cell lung cancer by enhancing mesothelial-mesenchymal transition. Strahlenther Onkol 2021; 197:141-149. [PMID: 32681351 DOI: 10.1007/s00066-020-01665-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is a major cause of cancer-related death globally. Endothelial PAS domain-containing protein 1 (EPAS1) is a homolog of the hypoxia-inducible factor 1α and has been reported to confer tyrosine kinase inhibitor (TKI) resistance in NSCLC, but its role in peritoneal carcinomatosis of NSCLC is unknown. METHODS PC14HM, a high metastatic potential subline of NSCLC cell line PC14, was derived. Stable shRNA knockdown of EPAS1 was then established in PC14HM cells and subjected to assessment regarding the effects on proliferation and viability, xenograft tumor growth, metastatic potential, mesothelial-mesenchymal transition (MMT)-related characteristics and peritoneal carcinomatosis in a mouse model. RESULTS EPAS1 expression was elevated in PC14HM cells. Knockdown of EPAS1 inhibited the proliferation and viability of PC14HM cells in vitro and suppressed tumorigenesis in vivo. In addition, the metastatic features and in vitro productions of MMT-inducing factors in PC14HM cells was also associated with EPAS1. More importantly, knockdown of EPAS1 drastically suppressed peritoneal carcinomatosis of PC14HM cells in vivo. CONCLUSION EPAS1 promotes peritoneal carcinomatosis of NSCLC through enhancement of MMT and could therefore serve as a prognostic marker or a therapeutic target in treating NSCLC, particularly in patients with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Qiang Zhen
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Yaxiao Zhang
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China.
| | - Lina Gao
- Central Supply Room, Hebei General Hospital, No. 348 Heping West Road, 050051, Shijiazhuang, Hebei, China
| | - Renfeng Wang
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Weiwei Chu
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Xiaojian Zhao
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Zhe Li
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Huixian Li
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Bing Zhang
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Baolei Lv
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| | - Jiabao Liu
- Department of Thoracic Surgery, Shijiazhuang No. 1 Hospital, 36 Fanxi Road, 050011, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Song Y, Zhang M, Lu MM, Qu LY, Xu SG, Li YZ, Wang MY, Zhu HF, Zhang ZY, He GY, Yuan ZQ, Li N. EPAS1 targeting by miR-152-3p in Paclitaxel-resistant Breast Cancer. J Cancer 2020; 11:5822-5830. [PMID: 32913475 PMCID: PMC7477434 DOI: 10.7150/jca.46898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Paclitaxel plays a pivotal role in the chemotherapy of breast cancer, but resistance to this drug is an important obstacle in the treatment. It is reported that microRNA-152-3p (miR-152-3p) is involved in tamoxifen resistance in breast cancer, but whether it is involved in paclitaxel resistance in breast cancer remains unknown. Materials and methods: We examined the expression of miR-152-3p in breast cancer tissues and cells by qRT-PCR. After transfecting paclitaxel-resistant MCF-7/TAX cells with miR-152-3p mimics, we analyzed the function of miR-152-3p in these cells by MTT assay and flow cytometry. We screened the target gene, endothelial PAS domain-containing protein 1 (EPAS1), using bioinformatics analysis and verified it with the dual luciferase reporter gene experiment. The relationship between EPAS1 and miR-152-3p and their roles in paclitaxel resistance of breast cancer were further investigated using RNA interference and transfection techniques. Results: The expression of miR-152-3p in normal breast tissues and cells was markedly higher than that in breast cancer. Overexpression of miR-152-3p decreased the survival rate and increased the apoptosis rate and sensitivity of MCF-7/TAX cells to paclitaxel. We confirmed that EPAS1 is the target of miR-152-3p and is negatively regulated by this miRNA. Moreover, transfection with EPAS1 siRNA enhanced the susceptibility and apoptosis rate of MCF-7/TAX cells to paclitaxel. Co-transfection of miR-152-3p mimics and EPAS1 increased paclitaxel sensitivity and apoptosis induced by the drug. Conclusion: miR-152-3p inhibits the survival of MCF-7/TAX cells and promotes their apoptosis by targeting the expression of EPAS1, thereby, enhancing the sensitivity of these breast cancer cells to paclitaxel.
Collapse
Affiliation(s)
- Ying Song
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mo Zhang
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Man Man Lu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Li Yuan Qu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Si Guang Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yong Zhen Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ming Yong Wang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, Henan 453003, P.R. China
| | - Hui Fang Zhu
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhe Ying Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guo Yang He
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhi Qing Yuan
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Na Li
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
4
|
Coliat P, Ramolu L, Jégu J, Gaiddon C, Jung AC, Pencreach E. Constitutive or Induced HIF-2 Addiction is Involved in Resistance to Anti-EGFR Treatment and Radiation Therapy in HNSCC. Cancers (Basel) 2019; 11:cancers11101607. [PMID: 31640284 PMCID: PMC6827016 DOI: 10.3390/cancers11101607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND management of head and neck squamous cell carcinomas (HNSCC) include anti-Epidermal Growth Factor Receptor (EGFR) antibodies and radiotherapy, but resistance emerges in most patients. RAS mutations lead to primary resistance to EGFR blockade in metastatic colorectal cancer but are infrequent in HNSCC, suggesting that other mechanisms are implicated. Since hypoxia and Hypoxia Inducible Factor-1 (HIF-1) have been associated with treatment failure and tumor progression, we hypothesized that EGFR/mammalian Target Of Rapamycin (mTOR)/HIF-1 axis inhibition could radiosensitize HNSCC. METHODS We treated the radiosensitive Cal27 used as control, and radioresistant SQ20B and UD-SCC1 cells, in vivo and in vitro, with rapamycin and cetuximab before irradiation and evaluated tumor progression and clonogenic survival. RESULTS Rapamycin and cetuximab inhibited the mTOR/HIF-1α axis, and sensitized the SQ20B cell line to EGFR-inhibition. However, concomitant delivery of radiation to SQ20B xenografts increased tumor relapse frequency, despite effective HIF-1 inhibition. Treatment failure was associated with the induction of HIF-2α expression by cetuximab and radiotherapy. Strikingly, SQ20B and UD-SCC1 cells clonogenic survival dropped <30% after HIF-2α silencing, suggesting a HIF-2-dependent mechanism of oncogenic addiction. CONCLUSIONS altogether, our data suggest that resistance to EGFR inhibition combined with radiotherapy in HNSCC may depend on tumor HIF-2 expression and underline the urgent need to develop novel HIF-2 targeted treatments.
Collapse
Affiliation(s)
- Pierre Coliat
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Service de Pharmacie, Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Ludivine Ramolu
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Jérémie Jégu
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
- Laboratoire d'Épidémiologie et de Santé Publique, Université de Strasbourg, 67200 Strasbourg, France.
- Service de Santé Publique, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France.
| | - Christian Gaiddon
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Alain C Jung
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Erwan Pencreach
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France.
| |
Collapse
|
5
|
Jin Q, Zhou J, Xu X, Huang F, Xu W. Hypoxia-inducible factor-1 signaling pathway influences the sensitivity of HCC827 cells to gefitinib. Oncol Lett 2019; 17:4034-4043. [PMID: 30881515 DOI: 10.3892/ol.2019.10025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
The majority of patients with non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutations inevitably progress in stage despite an initial substantial and rapid response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs). Previous research indicates that hypoxia may be associated with resistance to EGFR-TKIs in EGFR mutation-positive NSCLC. Therefore, the present study regulated the activity of hypoxia-inducible factor-1 (HIF-1) signaling pathway to observe if it is able to alter the sensitivity of lung cancer cells to gefitinib. The present study selected 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) and dimethyloxalylglycine (DMOG) as a HIF-1 signaling pathway inhibitor and activator, respectively, on HCC827 cells. Cells were incubated with different treatments for different durations: A blank control, DMOG, gefitinib, or DMOG and gefitinib combined, for 36 and 48 h; and then a blank control, YC-1, gefitinib, or YC-1 and gefitinib combined, for 16 and 28 h. A western blot analysis assay was performed to evaluate the protein expression levels of HIF-1α and phosphorylated hepatocyte growth factor receptor (p-MET), an MTT assay was used to determine cell proliferation, a colony formation assay was used to investigate the colony-forming ability and a wound healing assay was used to test the cell migration ability. Additionally, Pearson's correlation analysis was used to evaluate the correlation between p-Met and HIF-1α expression levels. Finally, it was identified that gefitinib and DMOG combined notably improve the growth and cell migration ability of HCC827 cells, compared with gefitinib alone. When gefitinib and YC-1 were combined, the inhibiting effect on the growth and cell migration ability of HCC827 cells was substantially enhanced, compared with the control cells. Pearson's correlation analysis revealed that the p-Met expression level had a strong positive correlation with HIF-1α expression levels. Thus, it was concluded that the HIF-1 signaling pathway influences the sensitivity of HCC827 cells to gefitinib. The positive correlation between p-Met and HIF-1α expression levels may be the underlying mechanism of the HIF-1 signaling pathway influencing the sensitivity of HCC827 cells to gefitinib.
Collapse
Affiliation(s)
- Qian Jin
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.,Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Jianying Zhou
- Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xianrong Xu
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Feihua Huang
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Weihua Xu
- Department of Respiratory Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
6
|
Murugesan T, Rajajeyabalachandran G, Kumar S, Nagaraju S, Jegatheesan SK. Targeting HIF-2α as therapy for advanced cancers. Drug Discov Today 2018; 23:1444-1451. [DOI: 10.1016/j.drudis.2018.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
|
7
|
Wang Z, Wei Y, Zhang R, Su L, Gogarten SM, Liu G, Brennan P, Field JK, McKay JD, Lissowska J, Swiatkowska B, Janout V, Bolca C, Kontic M, Scelo G, Zaridze D, Laurie CC, Doheny KF, Pugh EK, Marosy BA, Hetrick KN, Xiao X, Pikielny C, Hung RJ, Amos CI, Lin X, Christiani DC. Multi-Omics Analysis Reveals a HIF Network and Hub Gene EPAS1 Associated with Lung Adenocarcinoma. EBioMedicine 2018; 32:93-101. [PMID: 29859855 PMCID: PMC6021270 DOI: 10.1016/j.ebiom.2018.05.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Recent technological advancements have permitted high-throughput measurement of the human genome, epigenome, metabolome, transcriptome, and proteome at the population level. We hypothesized that subsets of genes identified from omic studies might have closely related biological functions and thus might interact directly at the network level. Therefore, we conducted an integrative analysis of multi-omic datasets of non-small cell lung cancer (NSCLC) to search for association patterns beyond the genome and transcriptome. A large, complex, and robust gene network containing well-known lung cancer-related genes, including EGFR and TERT, was identified from combined gene lists for lung adenocarcinoma. Members of the hypoxia-inducible factor (HIF) gene family were at the center of this network. Subsequent sequencing of network hub genes within a subset of samples from the Transdisciplinary Research in Cancer of the Lung-International Lung Cancer Consortium (TRICL-ILCCO) consortium revealed a SNP (rs12614710) in EPAS1 associated with NSCLC that reached genome-wide significance (OR = 1.50; 95% CI: 1.31-1.72; p = 7.75 × 10-9). Using imputed data, we found that this SNP remained significant in the entire TRICL-ILCCO consortium (p = .03). Additional functional studies are warranted to better understand interrelationships among genetic polymorphisms, DNA methylation status, and EPAS1 expression.
Collapse
Affiliation(s)
- Zhaoxi Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yongyue Wei
- Department of Epidemiology, Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruyang Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Li Su
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Stephanie M Gogarten
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Paul Brennan
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - John K Field
- Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - James D McKay
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland
| | - Beata Swiatkowska
- Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, Lodz, Poland
| | - Vladimir Janout
- Department of Epidemiology and Public Health, University of Ostrava, University of Olomouc, Olomouc, Czech Republic
| | - Ciprian Bolca
- Thoracic Surgery Division, "Marius Nasta" National Institute of Pneumology, Bucharest, Romania
| | - Milica Kontic
- Clinic of Pulmonology, Clinical Center of Serbia (KCS), Belgrade, Serbia
| | - Ghislaine Scelo
- Genetic Cancer Susceptibility group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow, Russian Federation
| | - Cathy C Laurie
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Kimberly F Doheny
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth K Pugh
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beth A Marosy
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kurt N Hetrick
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiangjun Xiao
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudio Pikielny
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, Canada
| | - Christopher I Amos
- Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
8
|
Zhou S, Li J, Xu H, Zhang S, Chen X, Chen W, Yang S, Zhong S, Zhao J, Tang J. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression. Gene 2017; 622:1-12. [DOI: 10.1016/j.gene.2017.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 02/08/2023]
|
9
|
Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, Zjablovskaja P, Alberich-Jorda M, Neuzil J, Truksa J. Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget 2017; 8:6376-6398. [PMID: 28031527 PMCID: PMC5351639 DOI: 10.18632/oncotarget.14093] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
Abstract
The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biological Transport
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Iron/metabolism
- Iron Chelating Agents/pharmacology
- Leukemia, Promyelocytic, Acute/enzymology
- Leukemia, Promyelocytic, Acute/genetics
- MCF-7 Cells
- Male
- Mice, Transgenic
- Mitochondria/enzymology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phenotype
- Principal Component Analysis
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Spheroids, Cellular
- Tamoxifen/pharmacology
- Transcriptome
Collapse
Affiliation(s)
- Zuzana Rychtarcikova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Charles University in Prague, Faculty of Sciences, Prague, Czech Republic
| | - Vlasta Korenkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Langerova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ekaterina Simonova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| | - Polina Zjablovskaja
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- School of Medical Science, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - Jaroslav Truksa
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Ma H, Liu B, Wang S, Liu J. MicroRNA-383 is a tumor suppressor in human lung cancer by targeting endothelial PAS domain-containing protein 1. Cell Biochem Funct 2016; 34:613-619. [PMID: 27862077 DOI: 10.1002/cbf.3237] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Hongjing Ma
- Department of Respiratory Medicine; The Fifth Central Hospital in Tianjin; Tianjin China
| | - Bin Liu
- Department of Emergency; The Fifth Central Hospital in Tianjin; Tianjin China
| | - Shuoying Wang
- Department of Respiratory Medicine; The Fifth Central Hospital in Tianjin; Tianjin China
| | - Jing Liu
- Department of Respiratory Medicine; The Fifth Central Hospital in Tianjin; Tianjin China
| |
Collapse
|