1
|
Liu Y, Han X, Han Y, Bi J, Wu Y, Xiang D, Zhang Y, Bi W, Xu M, Li J. Integrated transcriptomic analysis systematically reveals the heterogeneity and molecular characterization of cancer-associated fibroblasts in osteosarcoma. Gene 2024; 907:148286. [PMID: 38367852 DOI: 10.1016/j.gene.2024.148286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Osteosarcoma (OS), with a peak incidence during the adolescent growth spurt, is correlated with poor prognosis for its high malignancy. The tumor microenvironment (TME) is highly complicated, with frequent interactions between tumor and stromal cells. The cancer-associated fibroblasts (CAFs) in the TME have been considered to actively involve in the progression, metastasis, and drug resistance of OS. This study aimed to characterize cellular heterogeneity and molecular characterization in CAFs subtypes and explore the potential targeting therapeutic strategies to improve the prognosis of OS patients. METHODS The single-cell atlas of human OS tumor lesions were constructed from the GEO database. Then significant marker genes and potential biological functions for each CAFs subtype were identified and explored using the Seurat R package. Next, by performing the survival analyses and constructing the risk scores for CAFs subtypes, we aimed to identify and characterize the prognostic values of specific marker genes and different CAFs subtypes. Furthermore, we explored the therapeutic targets and innovative drugs targeting different CAFs subtypes based on the GDSC database. Finally, prognoses related CAFs subtypes were further validated through immunohistochemistry (IHC) on clinical OS specimens. RESULTS Overall, nine main cell clusters and five subtypes of CAFs were identified. The differentially expressed marker genes for each CAFs clusters were then identified. Moreover, through Gene Ontology (GO) enrichment analysis, we defined the CAFs_2 (upregulated CXCL14 and C3), which was closely related to leukocyte migration and chemotaxis, as inflammatory CAFs (iCAFs). Likewise, we defined the CAFs_4 (upregulated CD74, HLA-DRA and HLA-DRB1), which was closely related to antigen process and presentation, as antigen-presenting CAFs (apCAFs). Furthermore, Kaplan-Meier analyses showed that CAFs_2 and CAFs_4 were correlated with poor clinical prognosis of OS patients. Meanwhile, therapeutic drugs targeting CAFs_2 and CAFs_4, such as 17-AAG/Docetaxel/Bleomycin and PHA-793887/NG-25/KIN001-102, were also explored, respectively. Finally, IHC assay confirmed the abundant CAFs_2 and CAFs_4 subtypes infiltration in the OS microenvironment compared with adjacent tissues. CONCLUSION Our study revealed the diversity, complexity, and heterogeneity of CAFs in OS, and complemented the single-cell atlas in OS TME.
Collapse
Affiliation(s)
- Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, Yunnan, China; Chinese PLA Spinal Cord Injury Treatment Center, Kunming, Yunnan 650032, China
| | - Xinli Han
- School of Medicine, Nankai University, Tianjin 300074, China
| | - Yuchen Han
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Jingyou Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yanan Wu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Dongquan Xiang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yinglong Zhang
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Wenzhi Bi
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; School of Medicine, Nankai University, Tianjin 300074, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Meng Xu
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Beijing 100853, China.
| | - Jianxiong Li
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
2
|
Hu J, He Q, Tian T, Chang N, Qian L. Transmission of Exosomal TPX2 Promotes Metastasis and Resistance of NSCLC Cells to Docetaxel. Onco Targets Ther 2023; 16:197-210. [PMID: 37009264 PMCID: PMC10065223 DOI: 10.2147/ott.s401454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Background Lung cancer, most of which is non-small cell lung cancer (NSCLC), is the most common tumor in the world, and drug resistance, as a major problem in clinical treatment, has attracted extensive attention. However, the role and mechanism of Targeting protein for Xenopus kinesin-like protein 2 (TPX2), which is highly expressed in NSCLC, is still unclear. Methods Bioinformatics analysis was used to analyze the relationship between TPX2 and the clinicopathological features of NSCLC. Stable TPX2 overexpression cell lines with were constructed by lentivirus infection, and the effect of TPX2 on proliferation, migration, invasion and chemoresistance to docetaxel was characterized by the CCK8, wound healing, transwell, colony formation assay and FACS. An in vivo lung homing mouse model was used to further confirmed the role of TPX2 on metastasis. Exosomes were extracted by differential centrifugation from the culture supernatant, and their functions were investigated by co-culture with tumor cells. Gene expression was detected via Western blot and real time PCR (RT-qPCR). Results Overexpression of TPX2 was related to the poor prognosis of NSCLC. Promoted migration, invasion and metastasis, and reduced the sensitivity of NSCLC cells to docetaxel. The abundance of TPX2 can be packaged in vesicles and transported to other cells. In addition, overexpression of TPX2 induced the accumulation of β-catenin and C-myc. Conclusion Our findings indicated that intercellular transfer of exosomal TPX2 triggered metastasis and resistance against to docetaxel in lung cancer cells, through activating downstream WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiaru Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Qing He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
| | - Tian Tian
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230001, People’s Republic of China
| | - Na Chang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Cancer Hospital, Hefei, 230001, People’s Republic of China
| | - Liting Qian
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People’s Republic of China
- Correspondence: Liting Qian, Email
| |
Collapse
|
3
|
Duan H, Chen B, Wang W, Luo H. Identification of GNG7 as a novel biomarker and potential therapeutic target for gastric cancer via bioinformatic analysis and in vitro experiments. Aging (Albany NY) 2023; 15:1445-1474. [PMID: 36863706 PMCID: PMC10042700 DOI: 10.18632/aging.204545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies with unfavorable prognoses. The present study aimed to identify novel biomarkers or potential therapeutic targets in GC via bioinformatic analysis and in vitro experiments. The Gene Expression Omnibus and The Cancer Genome Atlas databases were used to screen the differentially expressed genes (DEGs). After protein-protein interaction network construction, both module and prognostic analyses were performed to identify prognosis-related genes in GC. The expression patterns and functions of G protein γ subunit 7 (GNG7) in GC were then visualized in multiple databases and further verified using in vitro experiments. A total of 897 overlapping DEGs were detected and 20 hub genes were identified via systematic analysis. After accessing the prognostic value of the hub genes using the online server Kaplan-Meier plotter, a six-gene prognostic signature was identified, which was also significantly correlated with the process of immune infiltration in GC. The results of open-access database analyses suggested that GNG7 is downregulated in GC; this downregulation was associated with tumor progression. Furthermore, the functional enrichment analysis unveiled that the GNG7-coexpressed genes or gene sets were closely correlated with the proliferation and cell cycle processes of GC cells. Finally, in vitro experiments further confirmed that GNG7 overexpression inhibited GC cell proliferation, colony formation, and cell cycle progression and induced apoptosis. As a tumor suppressor gene, GNG7 suppressed the growth of GC cells via cell cycle blockade and apoptosis induction and thus may be used as a potential biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Houyu Duan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Biao Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| |
Collapse
|
4
|
Dhanalakshmi M, Sruthi D, Jinuraj KR, Das K, Dave S, Andal NM, Das J. Mannose: a potential saccharide candidate in disease management. Med Chem Res 2023; 32:391-408. [PMID: 36694836 PMCID: PMC9852811 DOI: 10.1007/s00044-023-03015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023]
Abstract
There are a plethora of antibiotic resistance cases and humans are marching towards another big survival test of evolution along with drastic climate change and infectious diseases. Ever since the first antibiotic [penicillin], and the myriad of vaccines, we were privileged to escape many infectious disease threats. The survival technique of pathogens seems rapidly changing and sometimes mimicking our own systems in such a perfect manner that we are left unarmed against them. Apart from searching for natural alternatives, repurposing existing drugs more effectively is becoming a familiar approach to new therapeutic opportunities. The ingenious use of revolutionary artificial intelligence-enabled drug discovery techniques is coping with the speed of such alterations. D-Mannose is a great hope as a nutraceutical in drug discovery, against CDG, diabetes, obesity, lung disease, and autoimmune diseases and recent findings of anti-tumor activity make it interesting along with its role in drug delivery enhancing techniques. A very unique work done in the present investigation is the collection of data from the ChEMBL database and presenting the targetable proteins on pathogens as well as on humans. It shows Mannose has 50 targets and the majority of them are on human beings. The structure and conformation of certain monosaccharides have a decisive role in receptor pathogen interactions and here we attempt to review the multifaceted roles of Mannose sugar, its targets associated with different diseases, as a natural molecule having many success stories as a drug and future hope for disease management. Graphical abstract
Collapse
Affiliation(s)
- M. Dhanalakshmi
- Research and Development Centre, Bharathiar University, Coimbatore, 641046 Tamil Nadu India
| | - D. Sruthi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012 India
| | - K. R. Jinuraj
- OSPF-NIAS Drug Discovery Lab, NIAS, IISc Campus, Bengaluru, 560012 India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-3, Odisha India
| | - Sushma Dave
- Department of Applied Sciences, JIET, Jodhpur, Rajasthan India
| | - N. Muthulakshmi Andal
- Department of Chemistry, PSGR Krishnammal College for Women, Coimbatore, 641004 Tamil Nadu India
| | - Jayashankar Das
- Valnizen Healthcare, Vile Parle West, Mumbai, 400056 Maharashtra India
| |
Collapse
|
5
|
Suppression of histone deacetylase 1 by JSL-1 attenuates the progression and metastasis of cholangiocarcinoma via the TPX2/Snail axis. Cell Death Dis 2022; 13:324. [PMID: 35395834 PMCID: PMC8993895 DOI: 10.1038/s41419-022-04571-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
AbstractHistone deacetylases (HDACs) are entwined with the pathogenesis of various cancers and potentially serve as promising therapeutic targets. Herein, we intend to explore the potential role of HDAC1 inhibitor (JSL-1) in the tumorigenesis and metastasis of cholangiocarcinoma (CC) and to highlight the molecular basis of its function. As shown by bioinformatics analysis and immunohistochemical detection, high HDAC1 expression was witnessed in CC tissues relative to matched controls from patients with cholecystitis. The molecular network that HDAC1 silencing reduced the enrichment of HDAC1 and Snail on the TPX2 promoter was identified using immunoprecipitation and chromatin immunoprecipitation assays. Both short hairpin RNA (shRNA)-mediated knockdown of HDAC1 and JSL-1 treatment exhibited anti-proliferative, anti-migration and anti-invasion effects on CC cells through downregulation of TPX2. The in vivo xenograft model was developed in nude mice. Consistently, the anti-tumorigenic and anti-metastatic properties of shRNA against HDAC1 and HDAC1 inhibitor were validated in the in vivo settings. Taken together, our data supported the notion that HDAC1 inhibitor retards the initiation and development of CC via mediating the TPX2/Snail axis, highlighting the anti-tumor molecular network functioned in CC.
Collapse
|
6
|
Singh R, Som A. Common miRNAs, candidate genes and their interaction network across four subtypes of epithelial ovarian cancer. Bioinformation 2021; 17:748-759. [PMID: 35540695 PMCID: PMC9049094 DOI: 10.6026/97320630017748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is categorized into four major histological subtypes such as clear cell carcinoma (CCC), endometrioid carcinoma (EC), mucinous carcinoma (MC), and serous carcinoma (SC). Heterogeneity of the EOC leads to different clinical outcomes of the disease, although all the subtypes are originated from the same layer of tissue. Therefore, it is of interest to identify the common candidate genes, miRNA and their interaction network in four the subtypes of EOC. A comparative gene expression analysis identified 248 common differentially expressed genes (DEGs) in the four subtypes of EOC. Identified common DEGs were found to be enriched in cancer specific pathways. A protein-protein interaction (PPI) network of the common DEGs were constructed, and subsequent module and survival analyses identified seven key candidate genes (CCNB1, CENPM, CEP55, RACGAP1, TPX2, UBE2C, and ZWINT). We also documented 10 key candidate miRNAs (hsa-mir-16-5p, hsa-mir-23b-3p, hsa-mir-34a-5p, hsa-mir-103a-3p, hsa-mir-107, hsa-mir-124-3p, hsa-mir-129-2-3p, hsa-mir-147a, hsa-mir-205-5p, and hsa-mir-195-5p) linked to the candidate genes. These derived data find application in the understanding of EOC.
Collapse
Affiliation(s)
- Rinki Singh
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
7
|
Cui S, Li C. RHPN1‑AS1 promotes ovarian carcinogenesis by sponging miR‑485‑5p and releasing TPX2 mRNA. Oncol Rep 2021; 45:111. [PMID: 33907841 PMCID: PMC8082340 DOI: 10.3892/or.2021.8062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play a crucial role in cancer development. However, researchers have yet to identify the underlying association between lncRNAs and ovarian cancer (OC). The aim of the present study was to examine the effect of lncRNA RHPN1-AS1 (RHPN1-AS1) on OC cells and tissues. Reverse transcriptase-quantitative PCR (RT-qPCR) was utilized to quantify RHPN1-AS1, miR-485-5p, and TPX2 mRNA expression in samples with OC. Luciferase-reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay were then employed to validate the target relationship among RHPN1-AS1, miR-485-5p and TPX2. Cell Counting Kit-8, BrdU, wound-healing, cell-adhesion, and flow cytometry assays were also employed to assess cell viability, proliferation, migration, adhesion and apoptosis, respectively, in SKOV3 and OVCAR3 cell lines. Findings revealed that RHPN1-AS1 demonstrated a higher expression level in OC cell lines and tissues. In addition, RHPN1-AS1 enhanced the adhesion, proliferation and migration of OC cell lines but decreased apoptosis of OC cells. It was also observed that the relationship between RHPN1-AS1 and miR-485-5p was negative and that RHPN1-AS1 could sponge miR-485-5p to regulate the proliferation, apoptosis, adhesion, and migration abilities of OC cells. Moreover, TPX2 was targeted by miR-485-5p and was significantly overexpressed in OC cell lines and tissues. Experimental investigations also revealed that TPX2 promoted the proliferation, adhesion, and migration of OC cells but suppressed the apoptosis of SKOV3 and OVCAR3 cells. In summary, RHPN1-AS1 played a tumor promotive role by sponging miR-485-5p to increase TPX2 expression in OC tumorigenesis.
Collapse
Affiliation(s)
- Shoubin Cui
- Department of Gynaecology and Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Cui Li
- Department of Gynaecology and Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| |
Collapse
|
8
|
Huang C, Hu CG, Ning ZK, Huang J, Zhu ZM. Identification of key genes controlling cancer stem cell characteristics in gastric cancer. World J Gastrointest Surg 2020; 12:442-459. [PMID: 33304447 PMCID: PMC7701879 DOI: 10.4240/wjgs.v12.i11.442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/13/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Self-renewal of gastric cancer stem cells (GCSCs) is considered to be the underlying cause of the metastasis, drug resistance, and recurrence of gastric cancer (GC).
AIM To characterize the expression of stem cell-related genes in GC.
METHODS RNA sequencing results and clinical data for gastric adenoma and adenocarcinoma samples were obtained from The Cancer Genome Atlas database, and the results of the GC mRNA expression-based stemness index (mRNAsi) were analyzed. Weighted gene coexpression network analysis was then used to find modules of interest and their key genes. Survival analysis of key genes was performed using the online tool Kaplan-Meier Plotter, and the online database Oncomine was used to assess the expression of key genes in GC.
RESULTS mRNAsi was significantly upregulated in GC tissues compared to normal gastric tissues (P < 0.0001). A total of 16 modules were obtained from the gene coexpression network; the brown module was most positively correlated with mRNAsi. Sixteen key genes (BUB1, BUB1B, NCAPH, KIF14, RACGAP1, RAD54L, TPX2, KIF15, KIF18B, CENPF, TTK, KIF4A, SGOL2, PLK4, XRCC2, and C1orf112) were identified in the brown module. The functional and pathway enrichment analyses showed that the key genes were significantly enriched in the spindle cellular component, the sister chromatid segregation biological process, the motor activity molecular function, and the cell cycle and homologous recombination pathways. Survival analysis and Oncomine analysis revealed that the prognosis of patients with GC and the expression of three genes (RAD54L, TPX2, and XRCC2) were consistently related.
CONCLUSION Sixteen key genes are primarily associated with stem cell self-renewal and cell proliferation characteristics. RAD54L, TPX2, and XRCC2 are the most likely therapeutic targets for inhibiting the stemness characteristics of GC cells.
Collapse
Affiliation(s)
- Chao Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ce-Gui Hu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Kun Ning
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jun Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zheng-Ming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
9
|
Guo R, Chu A, Gong Y. Identification of cancer stem cell-related biomarkers in intestinal-type and diffuse-type gastric cancer by stemness index and weighted correlation network analysis. J Transl Med 2020; 18:418. [PMID: 33160391 PMCID: PMC7648412 DOI: 10.1186/s12967-020-02587-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background Cancer stem cells (CSCs) play an important role in drug resistance, recurrence, and metastasis of tumors. Considering the heterogeneity of tumors, this study aimed to explore the key genes regulating stem cells in intestinal-type and diffuse-type gastric cancer. Methods RNA-seq data and related clinical information were downloaded from The Cancer Genome Atlas (TCGA). WGCNA was used to clustered differentially expressed genes with similar expression profiles to form modules. Furtherly, based on the mRNA expression-based stemness index (mRNAsi), significant modules and key genes were identified. Next, the expression of key genes was further verified by the Oncomine database. Results MRNAsi scores of GC were significantly higher than that of normal tissue. Additionally, mRNAsi scores of intestinal-type GC (IGC) were significantly higher than that of diffuse-type GC (DGC). WGCNA showed that the blue module of IGC and the brown module of DGC were both the most significantly associated with mRNAsi. We screened out 16 and 43 key genes for IGC and DGC and found that these genes were closely related, respectively. Functional analysis showed the relationship between the key genes confirmed in the Oncomine database and the fate of cells. Conclusions In this study, 16 and 43 genes related to the characteristics of CSCs were identified in IGC and DGC, respectively. These genes were both associated with cell cycle, which could serve as therapeutic targets for the inhibition of stem cells from both types of GC.
Collapse
Affiliation(s)
- Rui Guo
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Province, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, P.R. China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Aining Chu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Province, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, P.R. China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yuehua Gong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, Liaoning Province, The First Hospital of China Medical University, No.155 NanjingBei Street, Heping District, Shenyang, 110001, P.R. China. .,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China. .,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
10
|
Zhou F, Wang M, Aibaidula M, Zhang Z, Aihemaiti A, Aili R, Chen H, Dong S, Wei W, Maimaitiaili A. TPX2 Promotes Metastasis and Serves as a Marker of Poor Prognosis in Non-Small Cell Lung Cancer. Med Sci Monit 2020; 26:e925147. [PMID: 32748897 PMCID: PMC7427348 DOI: 10.12659/msm.925147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Metastasis contributes to the high mortality rate of non-small cell lung cancer (NSCLC), and gaining a better understanding of its metastatic mechanisms would aid in initiating effective clinical treatment. MATERIAL AND METHODS In this study, bioinformatics analyses of the GEO database and TCGA-LUAD were first used to identify the key node gene regulating NSCLC malignant progression. Further in vitro experiments, including wound healing assay, invasion assay, Western blot assay, and luciferase report assay, were used to clarify the functions and mechanism of TPX2 in NSCLC. RESULTS Results of the TCGA analysis showed that TPX2 was significantly positively correlated with tumor metastasis and growth and the clinical stage of NSCLC. In addition, high levels of TPX2 significantly indicated a poor survival rate. In vitro experimental results also revealed that the upregulation of TPX2 significantly promoted NSCLC cell migration and invasion and could affect cell replasticity. Further results indicated that TPX2 significantly activated the epithelial-mesenchymal transition process and promoted the expression and activities of matrix metalloproteinase (MMP)2 and MMP9. CONCLUSIONS This study demonstrated that TPX2 promotes the metastasis and malignant progression of NSCLC and could thus serve as a marker of poor prognosis in NSCLC.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Meng Wang
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, China (mainland)
| | - Mijiti Aibaidula
- Department of Cardiothoracic Surgery, People's Hospital of Hetian, Hetian, Xinjiang, China (mainland)
| | - Zhiguo Zhang
- Department of Cardiothoracic Surgery, People's Hospital of Hetian, Hetian, Xinjiang, China (mainland)
| | - Abudusaimaiti Aihemaiti
- Department of Cardiothoracic Surgery, People's Hospital of Hetian, Hetian, Xinjiang, China (mainland)
| | - Rezhake Aili
- Department of Cardiothoracic Surgery, People's Hospital of Hetian, Hetian, Xinjiang, China (mainland)
| | - Hao Chen
- Department of Cardiothoracic Surgery, People's Hospital of Hetian, Hetian, Xinjiang, China (mainland)
| | - Shuangfeng Dong
- Department of Cardiothoracic Surgery, People's Hospital of Hetian, Hetian, Xinjiang, China (mainland)
| | - Wei Wei
- Department of Cardiothoracic Surgery, People's Hospital of Hetian, Hetian, Xinjiang, China (mainland)
| | - Abulizi Maimaitiaili
- Department of Cardiothoracic Surgery, People's Hospital of Hetian, Hetian, Xinjiang, China (mainland)
| |
Collapse
|
11
|
Huang J, Wen F, Huang W, Bai Y, Lu X, Shu P. Identification of hub genes and discovery of promising compounds in gastric cancer based on bioinformatics analysis. Biomark Med 2020; 14:1069-1084. [PMID: 32969243 DOI: 10.2217/bmm-2019-0608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To explore the mechanism of gastric carcinogenesis by mining potential hub genes and to search for promising small-molecular compounds for gastric cancer (GC). Materials & methods: The microarray datasets were downloaded from Gene Expression Omnibus database and the genes and compounds were analyzed by bioinformatics-related tools and software. Results: Six hub genes (MKI67, PLK1, COL1A1, TPX2, COL1A2 and SPP1) related to the prognosis of GC were confirmed to be upregulated in GC and their high expression was correlated with poor overall survival rate in GC patients. In addition, eight candidate compounds with potential anti-GC activity were identified, among which resveratrol was closely correlated with six hub genes. Conclusion: Six hub genes identified in the present study may contribute to a more comprehensive understanding of the mechanism of gastric carcinogenesis and the predicted potential of resveratrol may provide valuable clues for the future development of targeted anti-GC inhibitors.
Collapse
Affiliation(s)
- Jiani Huang
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- College of Traditional ChineseMedicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang Wen
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yingfeng Bai
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- College of Traditional ChineseMedicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaona Lu
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Peng Shu
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
12
|
Gu X, Yao X, Liu D. Up-regulation of microRNA-335-5p reduces inflammation via negative regulation of the TPX2-mediated AKT/GSK3β signaling pathway in a chronic rhinosinusitis mouse model. Cell Signal 2020; 70:109596. [PMID: 32156642 DOI: 10.1016/j.cellsig.2020.109596] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023]
Abstract
Chronic rhinosinusitis (CRS) is featured with chronic symptoms of inflammation or infection in the nasal and sinus tissues. MicroRNAs (miRNAs/miRs), such as dysregulated expression of miR-125b and miR-26a, has been previously demonstrated to be related to CRS. The present study is intended to define the role of miR-335-5p in inflammation and the related mechanism in a mouse model of CRS. The differentially expressed genes associated with CRS were screened by microarray analysis. The targeting relationship between miR-335-5p and TPX2 was analyzed by target prediction program and dual luciferase reporter gene assay. The mouse model of CRS was established, and mice were introduced with miR-335-5p mimics, miR-335-5p inhibitors, or siRNA against TPX2 to explore the regulatory functions of miR-335-5p. The regulatory effect of miR-335-5p on inflammation with the involvement of the AKT signaling pathway was also analyzed with the expression of inflammatory cytokines and AKT signaling pathway-related factors measured. It was indicated that miR-335-5p regulated the TPX2 gene-mediated AKT signaling pathway. TPX2 was identified as a target gene of miR-335-5p, and miR-335-5p elevation inhibited the activation of the AKT signaling pathway. In mice with CRS, up-regulation of miR-335-5p or silence of TPX2 inhibited the inflammation, as evidenced by decreased levels of TNF-α, IL-6 and IL-8, and higher levels of GSK3β and IL-10. Collectively, miR-335-5p inhibits the activation of AKT signaling pathway by negatively mediating TPX2, which may confer anti-inflammatory protection in CRS.
Collapse
Affiliation(s)
- Xiao Gu
- Department of E.N.T, Linyi People's Hospital, Linyi 276000, PR China
| | - Xiaocui Yao
- Clinical Laboratory, Linyi People's Hospital, Linyi 276000, PR China
| | - Dengtao Liu
- Clinical Laboratory, Linyi People's Hospital, Linyi 276000, PR China.
| |
Collapse
|
13
|
Nie C, Ma H, Gao Y, Li J, Tang Z, Chen Y, Lu R. RNA Sequencing and Bioinformatic Analysis on Retinoblastoma Revealing that Cell Cycle Deregulation Is a Key Process in Retinoblastoma Tumorigenesis. Ophthalmologica 2020; 244:51-59. [PMID: 32146475 DOI: 10.1159/000506993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE Retinoblastoma (RB) is a primary pediatric ocular malignancy that can be fatal with inadequate treatment. While multimodal treatments are applied for eye salvage, vision loss and metastasis can occur in some patients. The present study aimed to explore key pathways and factors in RB pathogenesis, which could be potential targets for novel RB treatments. METHODS RNA sequencing was performed on three RB tissues and referenced with three normal retinas. Differentially expressed genes (DEGs) were identified from sequencing data and further analyzed with clustering analysis, function and pathway enrichment, protein-protein interaction (PPI), and data-mining analysis in order to screen for tumorigenic relevancy. RESULTS A total of 331 DEGs were identified by clustering analysis of RB tissues, and the expression patterns were significantly distinguishable from normal retinas. Function and pathway enrichment and PPI analysis together showed that cell cycle was the most prominently upregulated pathway found in RB tissues. Following comprehensive bioinformatic analyses, six key genes relevant to cell cycle regulation were identified, namely BUB1, RRM2, TPX2, UBE2C, NUSAP1, and DTL. CONCLUSIONS Cell cycle pathway and six relevant genes may be potential key factors in RB tumorigenesis and laying the foundation for prospective investigation on development of novel targeted therapies.
Collapse
Affiliation(s)
- Cong Nie
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Huan Ma
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yang Gao
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jinmiao Li
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhixin Tang
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Ying Chen
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Rong Lu
- Department of Orbital Diseases and Ocular Oncology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China,
| |
Collapse
|
14
|
TPX2 as a Novel Prognostic Indicator and Promising Therapeutic Target in Triple-negative Breast Cancer. Clin Breast Cancer 2019; 19:450-455. [DOI: 10.1016/j.clbc.2019.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
|
15
|
Sun C, Li H, Mills RE, Guan Y. Prognostic model for multiple myeloma progression integrating gene expression and clinical features. Gigascience 2019; 8:giz153. [PMID: 31886876 PMCID: PMC6936209 DOI: 10.1093/gigascience/giz153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological cancer caused by abnormal accumulation of monoclonal plasma cells in bone marrow. With the increase in treatment options, risk-adapted therapy is becoming more and more important. Survival analysis is commonly applied to study progression or other events of interest and stratify the risk of patients. RESULTS In this study, we present the current state-of-the-art model for MM prognosis and the molecular biomarker set for stratification: the winning algorithm in the 2017 Multiple Myeloma DREAM Challenge, Sub-Challenge 3. Specifically, we built a non-parametric complete hazard ranking model to map the right-censored data into a linear space, where commonplace machine learning techniques, such as Gaussian process regression and random forests, can play their roles. Our model integrated both the gene expression profile and clinical features to predict the progression of MM. Compared with conventional models, such as Cox model and random survival forests, our model achieved higher accuracy in 3 within-cohort predictions. In addition, it showed robust predictive power in cross-cohort validations. Key molecular signatures related to MM progression were identified from our model, which may function as the core determinants of MM progression and provide important guidance for future research and clinical practice. Functional enrichment analysis and mammalian gene-gene interaction network revealed crucial biological processes and pathways involved in MM progression. The model is dockerized and publicly available at https://www.synapse.org/#!Synapse:syn11459638. Both data and reproducible code are included in the docker. CONCLUSIONS We present the current state-of-the-art prognostic model for MM integrating gene expression and clinical features validated in an independent test set.
Collapse
Affiliation(s)
- Chen Sun
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Nephrology Division, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Ma W, Wang B, Zhang Y, Wang Z, Niu D, Chen S, Zhang Z, Shen N, Han W, Zhang X, Wei R, Wang C. Prognostic significance of TOP2A in non-small cell lung cancer revealed by bioinformatic analysis. Cancer Cell Int 2019; 19:239. [PMID: 31528121 PMCID: PMC6737627 DOI: 10.1186/s12935-019-0956-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background Lung cancer has been a common malignant tumor with a leading cause of morbidity and mortality, current molecular targets are woefully lacking comparing to the highly progressive cancer. The study is designed to identify new prognostic predictors and potential gene targets based on bioinformatic analysis of Gene Expression Omnibus (GEO) database. Methods Four cDNA expression profiles GSE19188, GSE101929, GSE18842 and GSE33532 were chosen from GEO database to analyze the differently expressed genes (DEGs) between non-small cell lung cancer (NSCLC) and normal lung tissues. After the DEGs functions were analyzed, the protein-protein interaction network (PPI) of DEGs were constructed, and the core gene in the network which has high connectivity degree with other genes was identified. We analyzed the association of the gene with the development of NSCLC as well as its prognosis. Lastly we explored the conceivable signaling mechanism of the gene regulation during the development of NSCLC. Results A total of 92 up regulated and 214 down regulated DEGs were shared in four cDNA expression profiles. Based on their PPI network, TOP2A was connected with most of other genes and was selected for further analysis. Kaplan-Meier overall survival analysis (OS) revealed that TOP2A was associated with worse NSCLC patients survival. And both GEPIA analysis and immunohistochemistry experiment (IHC) confirmed that TOP2A was aberrant gain of expression in cancer comparing to normal tissues. The clinical significance of TOP2A and probable signaling pathways it involved in were further explored, and a positive correlation between TOP2A and TPX2 expression was found in lung cancer tissues. Conclusion Using bioinformatic analysis, we revealed that TOP2A could be adopted as a prognostic indicator of NSCLC and it potentially regulate cancer development through co-work with TPX2. However, more detailed experiments are needed to clarify its drug target role in clinical medical use.
Collapse
Affiliation(s)
- Wenxia Ma
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Bin Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Yaping Zhang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Ziyue Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Dan Niu
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Siyu Chen
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Zhirong Zhang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Ningning Shen
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Weixia Han
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Xiaoqin Zhang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Rong Wei
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| | - Chen Wang
- Department of Pathology, The Second Hospital of ShanXi Medical University, No. 382 WuYi Road, Tai Yuan, 030000 Shanxi China
| |
Collapse
|
17
|
Yang W, Wan H, Shan R, Wen W, Li J, Luo D, Wan RH. The clinical significance and prognostic value of Xenopus kinesin-like protein 2 expressions in human tumors: A systematic review and meta-analysis. J Cell Physiol 2019; 234:14991-14998. [PMID: 30779127 DOI: 10.1002/jcp.28343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein that plays a pivotal part in the formation of spindles. There is accumulating evidence that the expression of TPX2 is upregulated in many kinds of human cancers and that this protein is involved in the occurrence and progression of tumors. The purpose of this meta-analysis was to investigate the relationship between the overexpression of TPX2 and poor prognosis in cancer patients. A total of 18 eligible studies encompassing 3115 patients were included by searching relevant databases. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were pooled under random-/fixed-effect models. After calculation, the results showed that patients with increased TPX2 expression had a significantly shorter overall survival (HR = 2.21; 95% CI: 1.70-2.86), and disease-free survival (HR = 2.10; 95% CI: 1.67-2.64). In addition, it was found that increased TPX2 expression was significantly associated with TNM stage (OR = 2.17; 95% CI:1.42-3.32), lymph node metastasis (OR = 2.98; 95% CI: 2.28-3.89), distant metastasis (OR = 2.25; 95% CI:1.03-4.92), and vascular invasion (OR = 2.22; 95% CI:1.26-3.91). Nevertheless, there was no significant correlation between increased expression of TPX2 and either gender, tumor differentiation, or tumor size. Thus, we can come to the conclusion that the overexpression of TPX2 is related to poor clinical outcomes and can be used as a biomarker for the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Weina Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haiting Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Ren-Hua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Designing a Novel Multi-epitope T Vaccine for “Targeting Protein for Xklp-2” (TPX2) in Hepatocellular Carcinoma Based on Immunoinformatics Approach. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Wang F, Zhao W, Gao Y, Zhou J, Li H, Zhang G, Guo D, Xie C, Li J, Yin Z, Zhang J. CDK5-mediated phosphorylation and stabilization of TPX2 promotes hepatocellular tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:286. [PMID: 31272499 PMCID: PMC6610961 DOI: 10.1186/s13046-019-1297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
Background CDK5, an atypical member of the CDK family, play a significant role in the tumorigenesis of multiple organ, but CDK5 and its substrates in genesis and development of HCC is still unclear. Methods Expression of CDK5 in HCC tumor and paired adjacent noncancerous tissues from 90 patients were measured by Western blotting, immunohistochemistry, and real-time PCR. The role of CDK5 in cell function and tumorigenesis was explored in HCC cell lines, ex vivo xenografts and diethylnitrosamine induced HCC model. Furthermore, comparative phosphoproteomic screening identified the oncoprotein TPX2 as a new substrate of CDK5. We also identified the effect of CDK5/P25 interaction blocker tamoxifen on HCC cell growth and migration. Results CDK5 was increased in HCC tisues and the level of CDK5 was correlated with the severity of HCC based on patient recurrence and 5-year fatality rate. Exogenously expressed CDK5 but not kinase-dead CDK5 promoted proliferation, migration, and invasion of HCC cells. Functional ablation of CDK5 significantly inhibited the exacerbation of HCC cells. Xenograft implantation of HCC cells overexpressing CDK5 promoted tumorigenesis, and genetic knockdown of CDK5 reduced HCC growth and metastasis in vivo. More importantly, heterozygous knockout CDK5 (Cdk5+/−) attenuated HCC tumorigenesis induced by diethylnitrosamine. CDK5-mediated phosphorylation of TPX2 at serine 486 promoted its protein stability. TPX2 silence could restore HCC cell migration capability with overexpression CDK5. Treatment with tamoxifen inhibited cell growth and migration of HCC, demonstrating the role of active CDK5 in HCC. Conclusions Our results suggest activation of CDK5 is associated with HCC tumorigenesis. CDK5-mediated phosphorylation and stabilization of TPX2 promotes hepatocellular proliferation and tumorigenicity. Electronic supplementary material The online version of this article (10.1186/s13046-019-1297-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fuqiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, 361004, Fujian, China
| | - Wenxing Zhao
- Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Yuehong Gao
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Huifang Li
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guanyun Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dong Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chengrong Xie
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, 361004, Fujian, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, 361004, Fujian, China
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen, 361004, Fujian, China.
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Diseaseand Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
20
|
Liu W, Xu J, Zhang C. Prognostic and clinical value of Targeting protein for Xenopus kinesin-like protein 2 in patients with gastrointestinal tract cancers: A meta-analysis. Medicine (Baltimore) 2018; 97:e13303. [PMID: 30431618 PMCID: PMC6257341 DOI: 10.1097/md.0000000000013303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Accumulating studies have indicated that Targeting protein for Xenopus kinesin-like protein 2 (TPX2) was overexpressed in various types of human cancers. However, the prognostic and clinical value of TPX2 in gastrointestinal (GI) tract cancers was not well-understood. This study was aimed to comprehensively explore the prognostic and clinical significance of TPX2 in GI tract cancers. METHODS Eligible studies were systematically retrieved in PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI) and Wanfang database. The eligible studies were collected to evaluate the association of TPX2 with prognosis and clinicopathological features, with the pooling hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (CI). RESULT The meta-analysis suggested that overexpression of TPX2 protein was significantly correlated with poor overall survival (OS) (HR: 2.20, 95% CI: 1.60-2.80, P <.001) in GI tract cancers, the subgroup meta-analysis also confirmed the prognostic value of TPX2 protein. Furthermore, clinical significances of TPX2 protein in gastric cancer were discussed. CONCLUSION Upregulated TPX2 protein was correlated with poor clinical outcomes, suggesting that TPX2 protein can serve as a promising predictive biomarker in patients with GI tract cancers.
Collapse
|
21
|
Zou Z, Zheng B, Li J, Lv X, Zhang H, Yu F, Kong L, Li Y, Yu M, Fang L, Liang B. TPX2 level correlates with cholangiocarcinoma cell proliferation, apoptosis, and EMT. Biomed Pharmacother 2018; 107:1286-1293. [DOI: 10.1016/j.biopha.2018.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/27/2022] Open
|
22
|
Condorelli DF, Spampinato G, Valenti G, Musso N, Castorina S, Barresi V. Positive Caricature Transcriptomic Effects Associated with Broad Genomic Aberrations in Colorectal Cancer. Sci Rep 2018; 8:14826. [PMID: 30287863 PMCID: PMC6172234 DOI: 10.1038/s41598-018-32884-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
We re-examined the correlation between Broad Genomic Aberrations (BGAs) and transcriptomic profiles in Colorectal Cancer (CRC). Two types of BGAs have been examined: Broad Copy-Number Abnormal regions (BCNAs), distinguished in gain- and loss-type, and Copy-Neutral Loss of Heterozygosities (CNLOHs). Transcripts are classified as “OverT” or “UnderT” if overexpressed or underexpressed comparing CRCs bearing a specific BGA to CRCs not bearing it and as “UpT” or “DownT” if upregulated or downregulated in cancer compared to normal tissue. BGA-associated effects were evaluated by changes in the “Chromosomal Distribution Index” (CDI) of different transcript classes. Data show that UpT are more sensitive than DownT to BCNA-associated gene dosage effects. “Over-UpT” genes are upregulated in cancer and further overexpressed by gene dosage, defining the so called “positive caricature transcriptomic effect”. When Over-UpT genes are ranked according to overexpression, top positions are occupied by genes implicated at the functional and therapeutic level in CRC. We show that cancer-upregulated transcripts are sensitive markers of BCNA-induced effects and suggest that analysis of positive caricature transcriptomic effects can provide clues toward the identification of BCNA-associated cancer driver genes.
Collapse
Affiliation(s)
- Daniele F Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy.
| | - Giorgia Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Giovanna Valenti
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy
| | - Sergio Castorina
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, (95123), Italy
| | - Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, Catania, (95123), Italy.
| |
Collapse
|
23
|
Wang S, Chen Y, Chai Y. Prognostic role of targeting protein for Xklp2 in solid tumors: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e13018. [PMID: 30412141 PMCID: PMC6221728 DOI: 10.1097/md.0000000000013018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prognostic role of targeting protein for Xklp2 (TPX2) in solid tumors has been investigated in several researches, but the results remain controversial. Here we present a meta-analysis to systematically review the association between TPX2 expression levels and prognosis of human solid tumors. METHODS Studies published until December 2017 were searched in PubMed, Web of Science, and EBSCO, 13 studies (2134 patients) were collected for analysis. Odds ratios (ORs) for overall survival (OS) and disease-free survival (DFS) from individual studies were calculated by the application of Mantel-Haenszel random effect model. Pooled ORs were estimated by Z test. Publication bias and interstudy heterogeneity analyses were also performed. RESULTS TPX2 overexpression was associated with poor OS at 3 and 5 years [OR = 4.63, 95% confidence interval (CI): 3.27-6.56, P < .00001; OR = 4.05, 95% CI: 2.32-7.07, P < .00001, respectively] of solid tumors. Similar results were observed with DFS at 3 and 5 years (OR = 3.35, 95% CI: 1.83-6.14, P < .0001; OR = 2.94, 95% CI: 1.74-4.98, P < .0001, respectively). Subgroup analysis revealed that increased TPX2 expression was related to worse prognosis of gastric cancer and hepatocellular cancer, while irrelevant to esophageal squamous cell cancer at 5-year survival rate. CONCLUSIONS Overexpression of TPX2 is related to poor survival rate in most solid tumors, which indicates that the expression level of TPX2 is a significant prognostic parameter and potential therapeutic target in various solid tumors.
Collapse
|
24
|
Jiang T, Sui D, You D, Yao S, Zhang L, Wang Y, Zhao J, Zhang Y. MiR-29a-5p inhibits proliferation and invasion and induces apoptosis in endometrial carcinoma via targeting TPX2. Cell Cycle 2018; 17:1268-1278. [PMID: 29888640 DOI: 10.1080/15384101.2018.1475829] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study was aimed to explore the effects of miR-29a-5p expression and its target gene TPX2 (target protein for Xenopus kinesin-like protein 2) on endometrial cancer (EC) devel on EC development and to assess the prognostic impacts of TPX2. Microarray-based GEO and TCGA (the Cancer Genome Atlas) EC expression data were used to identify differentially expressed miRNAs and mRNAs. The observed potential target relationship between miR-29a-5p and TPX2 was verified using TargetScan and luciferase reporter assays. The mRNA and protein expression levels of miR-29a-5p and TPX2 were confirmed by qRT-PCR and western blot, respectively. Associations between TPX2 expression and patient prognosis were assessed using Kaplan-Meier and log-rank assays. Changes in EC-derived cell proliferation, invasion and apoptosis after exogenous miR-29a-5p and TPX2 over-expression and/or silencing were assessed using CCK-8 (cell counting kit-8), colony formation, Transwell and flow cytometry assays, respectively. We found that in primary EC tissues the expression of miR-29a-5p was down-regulated and the expression of TPX2 was up-regulated. We also found that low expression of TPX2 were associated with a better prognosis, and vice versa. Subsequent exogenous miR-29a-5p over-expression and TPX2 silencing could inhibit EC-derived cell proliferation and invasion, and to induce apoptosis. We also found that miR-29a-5p might target and repress TPX2, thereby inhibiting EC-derived cell proliferation and invasion and enhancing apoptosis. We conclude that miR-29a-5p could inhibit the proliferation and invasion of EC-derived cells and enhance the apoptosis of EC-derived cells via TPX2 down-regulation. A high TPX2 expression in primary EC tissues was found to be associated with a poor prognosis. As such, these biomarkers may serve as promising prognostic indicators. ABBREVIATIONS EC: Endometrial cancer; 3'-UTR: 3'-untranslated regions; TPX2: target protein for Xenopus kinesin-like protein 2; TCGA: the Cancer Genome Atlas; UCEC: uterine corpus endometrial carcinoma; CCK-8: cell counting kit-8; OD: optical density; FCM: flow cytometry; EMT: epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Tiechao Jiang
- a Department of Cardiology , China-Japan Union Hospital of Jilin University , Jilin , China.,b Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis , Jilin , China
| | - Dongming Sui
- c Department of Asset Management , The First Hospital of Jilin University , Jilin , China
| | - Dong You
- d Department of Thoracic Surgery , The First Hospital of Jilin University , Jilin , China
| | - Songmei Yao
- e Department of Traditional Chinese Medicine , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Lirong Zhang
- f Department of Pathology , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Yingjian Wang
- g Department of Gynaecology and Obstetrics , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Jixue Zhao
- h Department of Pediatric Surgery , The First Hospital of Jilin University , Jilin , China
| | - Yaozhong Zhang
- i Department of Anesthesiology , China-Japan Union Hospital of Jilin University , Jilin , China
| |
Collapse
|
25
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
26
|
Tian Y, Liu LL, Guo DM, Wang Y, Zha WH, Li Y, Wu FJ. TPX2 gene silencing inhibits cell proliferation and promotes apoptosis through negative regulation of AKT signaling pathway in ovarian cancer. J Cell Biochem 2018; 119:7540-7555. [PMID: 29904936 DOI: 10.1002/jcb.27065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023]
Abstract
Ovarian cancer (OC) is the leading cause of death from gynecological malignancy. Accumulated studies have revealed that targeting protein for Xklp2 (TPX2) was tightly associated with the development and progression of OC. The present study further determined a novel mechanism of TPX2 in OC via the AKT signaling pathway. The differentially expressed genes were screened in GEO database for gene expression microarray of OC. Bioinformatics was used to analyze the key differentially expressed genes in OC. We prepared CD133/1+ OC stem cells. Then cells were treated with TPX2-1 siRNA and perifcsine to explore the correlation of TPX2 and the AKT signaling pathway. We determined the expression of TPX2, AKT, Pl3 K, PTEN, caspase-3, Bax and Bcl-2 in OC cells. Cell proliferation, migration, invasion, and apoptosis rate were respectively measured using MTT and EdU assays, Transwell assay, Scratch test, and flow cytometry. Xenograft tumor in nude mice was used to determine the effect of TPX2 in OC cells in vitro. Initially, TPX2 overexpression was observed in OC, and TPX2 mediated the effect of the AKT signaling pathway in OC. TPX2 knockdown decreased expression of AKT, Pl3 K, and Bcl-2, and the extent of AKT phosphorylation, but increased expression of PTEN, Caspase-3, and Bax. Furthermore, TPX2 knockdown suppressed OC cell proliferation, migration and invasion, but promoted OC cell apoptosis. Taken together, TPX2 silencing negatively regulates the AKT signaling pathway by which OC cell proliferation was inhibited yet cell apoptosis was accelerated, suggesting a potential therapeutic approach to OC.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Lian-Lian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Dong-Mei Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yan Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wen-Hui Zha
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Fu-Ju Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
27
|
Fu X, Zhu Y, Zheng B, Zou Y, Wang C, Wu P, Wang J, Chen H, Du P, Liang B, Fang L. KIFC1, a novel potential prognostic factor and therapeutic target in hepatocellular carcinoma. Int J Oncol 2018; 52:1912-1922. [PMID: 29620256 PMCID: PMC5919720 DOI: 10.3892/ijo.2018.4348] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
Kinesin family member C1 (KIFC1, also known as HSET) is a minus end-directed motor protein, which is critical in centrosome clustering. The present study investigated the expression of KIFC1 in paired hepatocellular carcinoma (HCC) tissues and adjacent non-cancerous tissues from 91 patients by immunohistochemical analysis; clinical data were concomitantly collected. KIFC1 was expressed at high levels in HCC tissues, compared with that in peritumoral tissues (54.9 vs. 14.3%; P<0.01), and its expression correlated with tumor emboli, metastasis, recurrence and time of recurrence. Kaplan-Meier analysis showed that the expression of KIFC1 was significantly associated with tumor-free survival rates. In addition, multivariate analyses revealed that the overexpression of KIFC1was an independent predictive marker in patients with HCC. Consistently, data derived from GEPIA was in agreement with the results. In vitro, KIFC1 knockdown effectively decreased HCC cell viability, and induced apoptosis and cell death. KIFC1 knockdown also significantly suppressed tumor cell migration and invasion in vitro. Mechanistically, the apoptosis-related protein, B-cell lymphoma-2 (Bcl-2), was downregulated in KIFC1 small interfering RNA-treated groups, whereas thee levels of Bcl-2-associated X protein and p53 were upregulated. In addition, the expression levels of phosphorylated phosphoinositide 3-kinase and phosphorylated AKT were decreased significantly when KIFC1 was silenced. The epithelial-mesenchymal transition-related proteins, N-cadherin, matrix metalloproteinase-2 (MMP-2), β-catenin, Slug, and Zinc finger E-box-binding homeobox 1, were downregulated, whereas the expression of E-cadherin was upregulated. The overexpression of KIFC1 was correlated closely with the progression of HCC and poor prognosis, and suggested that the expression levels of KIFC1 are a potential prognostic biomarker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Xiaowei Fu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yaqiong Zhu
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Bingbing Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yeqing Zou
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Chao Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Peng Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jun Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Haimin Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Pengcheng Du
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Lu Fang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
28
|
Wang G, Wang Q, Li Z, Liu C, He X. Clinical value of Xenopus kinesin-like protein 2 as a prognostic marker in patients with digestive system cancers: a systematic review and meta-analysis. Onco Targets Ther 2018; 11:1229-1243. [PMID: 29551902 PMCID: PMC5843138 DOI: 10.2147/ott.s150829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein that plays an important role in spindle assembly and dynamics. However, the clinical and prognostic value of TPX2 in the digestive system cancers remains unclear. The objective of this review was to evaluate the association of TPX2 expression with disease-free survival (DFS), overall survival (OS), and clinicopathological features of digestive system cancers. The software Stata 12.0 was used to analyze the outcomes, including OS, disease-free survival (DFS), and clinicopathological characteristics. A total of 10 eligible studies with 906 patients were included. Elevated TPX2 expression was significantly associated with poor DFS (pooled hazard ratio [HR] =2.48, 95% confidence interval [CI]: 1.96–3.13) and OS (pooled HR =2.66, 95% CI: 2.04–3.48) of digestive system malignancies. Subgroup analyses showed that cancer type, sample size, study quality, and laboratory detection methods did not alter the significant prognostic value of TPX2. Additionally, TPX2 expression was found to be an independent predictive factor for DFS (HR =2.31, 95% CI: 1.78–3.01). TPX2 expression might be associated with TNM stage and pathological grade in digestive system cancer. In conclusion, TPX2 is an independent prognostic factor for survival of patients with digestive system cancer. Furthermore, its overexpression is associated with TNM stage and pathological grade in digestive system cancer.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Wang
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengyan Li
- Department of Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Chaoxu Liu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xianli He
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
Borges DDP, Dos Santos AWA, Paier CRK, Ribeiro HL, Costa MB, Farias IR, de Oliveira RTG, França IGDF, Cavalcante GM, Magalhães SMM, Pinheiro RF. Prognostic importance of Aurora Kinases and mitotic spindle genes transcript levels in Myelodysplastic syndrome. Leuk Res 2017; 64:61-70. [PMID: 29220700 DOI: 10.1016/j.leukres.2017.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
Myelodysplastic syndrome (MDS) are a heterogeneous group of clonal disease characterized by insufficiency of bone marrow, increase of apoptosis and increased risk of acute leukemia progression. Proteins related to the mitotic spindle (AURKA, AURKB, TPX2), to the mitotic checkpoint (MAD2, CDC20) and the regulation of the cell cycle (p21) are directly related to chromosomal stability and tumor development. This study aimed to evaluate the mRNA expression levels of these genes in 101 MDS patients using a real-time PCR methodology. We identified that CDC20 expression are increased in patients with dysmegakaryopoiesis (p=0.024), thrombocytopenia (p=0.000) and high-risk patients (p=0.014, 0.018) MAD2 expression are decreased in patients with 2 or 3 cytopenias (p=0.000) and neutrophil below 800/mm3. TPX2 is also overexpressed in patients presenting dysmegakaryopoiesis (p=0.009). A decrease in AURKA and AURKB expression were observed in patients with altered karyotype (p=0.000), who presented dysplasia in 3 lineages (p=0.000; 0.017) and hemoglobin inferior to 8g/dL (p=0.024). The expression of AURKA, AURKB and MAD2 (p=0.000; 0.001; 0.025) were decreased in patients with hypoplastic MDS, associated with high frequency of chromosomal alterations and high mortality rate. This study reaffirms the importance of aurora kinases and mitotic spindle genes to the pathogenesis and clinical evolution of MDS.
Collapse
Affiliation(s)
- Daniela de Paula Borges
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Antônio Wesley Araújo Dos Santos
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | | | - Howard Lopes Ribeiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Marília Braga Costa
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Izabelle Rocha Farias
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Roberta Taiane Germano de Oliveira
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ivo Gabriel da Frota França
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Gabrielle Melo Cavalcante
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Sílvia Maria Meira Magalhães
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| |
Collapse
|
30
|
Yan L, Li Q, Yang J, Qiao B. TPX2-p53-GLIPR1 regulatory circuitry in cell proliferation, invasion, and tumor growth of bladder cancer. J Cell Biochem 2017; 119:1791-1803. [PMID: 28799673 DOI: 10.1002/jcb.26340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
The targeting protein for Xenopus kinesin-like protein 2 (TPX2) is associated with the metastasis and prognosis of bladder cancer. p53 is closely related to the progression of bladder cancer. Human glioma pathogenesis-related protein 1 (GLIPR1) is a p53 target gene with antitumor activity. This study aims to explore the interplay between TPX2, p53, and GLIPR1 and its correlation with cell proliferation, invasion, and tumor growth in bladder cancer. Here, Western blot and qRT-PCR analysis revealed that TPX2 at both mRNA and protein levels was up-regulated in bladder carcinoma tissues compared to their paired adjacent normal tissues. Additionally, tissues expressing high TPX2 level exhibited high p53 level and low GLIPR1 level. The expressions of TPX2 and p53 in non-muscle-invasive bladder cancer cells (KK47 and RT4) were lower than those in muscle-invasive bladder cancer cells (T24, 5637, and UM-UC-3), while GLIPR1 showed the converse expression pattern. Further investigation revealed that TPX2 activated the synthesis of p53; and GLIPR1 is up-regulated by wild-type (wt)-p53 but not affected by mutated p53; Additionally, GLIPR1 inhibited TPX2. These data suggested a TPX2-p53-GLIPR1 regulatory circuitry. Meanwhile, TPX2 overexpression promoted while overexpression of GLIPR1 or p53 inhibited bladder cancer growth. Interestingly, in T24 cells with mutated p53, p53 silence suppressed bladder cancer growth. This study identified a novel TPX2-p53-GLIPR1 regulatory circuitry which modulated cell proliferation, migration, invasion, and tumorigenicity of bladder cancer. Our findings provide new insight into underlying mechanisms of tumorigenesis and novel therapeutic options in bladder cancer.
Collapse
Affiliation(s)
- Liang Yan
- Department of, Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Department of, Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Yang
- Department of, Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Baoping Qiao
- Department of, Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Zhang N, Hong B, Lian W, Zhou C, Chen S, Du X, Deng X, Duoerkun S, Li Q, Yang Y, Gong K. Vascular endothelial growth inhibitor 174 and its functional domains inhibit epithelial-mesenchymal transition in renal cell carcinoma cells in vitro. Int J Mol Med 2017; 40:569-575. [PMID: 28656288 DOI: 10.3892/ijmm.2017.3033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/08/2017] [Indexed: 11/06/2022] Open
Abstract
The present study was carried out to investigate the effects of vascular endothelial growth inhibitor 174 (VEGI174) and its functional domains (V7 and V8) on epithelial‑mesenchymal transition (EMT) in renal cell carcinoma (RCC) cells in vitro. The RCC cell lines A498 and 786‑O were used in this study. Based on our preliminary study, we selected full‑length VEGI174 and its functional domains (V7 and V8) as the target genes in this study. Plasmids containing VEGI174, V7 or V8 transgenes were constructed and transfected into A498 and 786‑O cell lines. Cytological activity was tested during cell culture. Quantitative PCR and western blot analysis were performed to determine the expression levels of EMT markers (E‑cadherin, vimentin, β‑catenin and Slug). Overexpression of VEGI174, V7 or V8 did not have a significant influence on cell viability (P>0.05). The mRNA level of E‑cadherin was significantly upregulated, while that of vimentin was downregulated in A498VEGIexp, A498V7exp, A498V8exp, 786‑OVEGIexp, 786‑OV7exp and 786‑OV8exp cells compared with the cells containing the empty plasmid controls (P<0.05). The western blot results showed that changes in protein expression levels were consistent with the changes in mRNA expression. Both the mRNA and protein expression levels of β‑catenin and Slug were downregulated in the A498VEGIexp, A498V7exp, A498V8exp, 786‑OVEGIexp, 786‑OV7exp and 786‑OV8exp cells. In conclusion, overexpression of VEGI174, V7 or V8 inhibited EMT in A498 and 786‑O cells. Notably, V7 and V8 are two effective functional domains of VEGI174 that have the potential to be studied for peptide synthesis and the treatment of RCC.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Urology, Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, P.R. China
| | - Baoan Hong
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Wenyong Lian
- Department of Urology, Xinjiang Production and Construction Corps First Division Hospital, Aksu, Xinjiang 843000, P.R. China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Siqi Chen
- School of Pharmaceutical Sciences, Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Xin Du
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiaohu Deng
- Department of Urology, Karamay People's Hospital, Karamay, Xinjiang 834000, P.R. China
| | - Shayiremu Duoerkun
- Department of Urology, Hami District Central Hospital, Hami, Xinjiang 839000, P.R. China
| | - Qing Li
- School of Pharmaceutical Sciences, Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Yong Yang
- Department of Urology, Peking University Cancer Hospital, Beijing Institute for Cancer Research, Beijing 100142, P.R. China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
32
|
Tomii C, Inokuchi M, Takagi Y, Ishikawa T, Otsuki S, Uetake H, Kojima K, Kawano T. TPX2 expression is associated with poor survival in gastric cancer. World J Surg Oncol 2017; 15:14. [PMID: 28069036 PMCID: PMC5223319 DOI: 10.1186/s12957-016-1095-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein required for microtubule formation in human cells. Several studies have demonstrated that TPX2 is overexpressed in multiple tumor types and promotes tumor growth and metastasis. However, there have been few reports regarding its role in gastric cancer. In this study, we evaluated TPX2 expression and investigated its correlations with gastric cancer clinicopathological features and prognosis. METHODS Tumor samples were obtained from 290 patients with gastric adenocarcinoma who had undergone gastrectomy. The expression of TPX2 protein was examined using immunohistochemical staining. TPX2 messenger RNA (mRNA) levels were evaluated using real-time quantitative reverse transcription PCR in 19 of the gastric cancer tumors and adjacent normal tissues. RESULTS The mRNA levels of TPX2 were significantly higher in gastric cancer tissues than in matched adjacent normal tissues (p = 0.004). In the immunohistochemical analysis, TPX2 overexpression was found in 123 (42.4%) of 290 patients. High TPX2 expression was positively associated with age, type of histology, depth of tumor, lymph node metastasis, stage, and remote metastasis or recurrence. High TPX2 expression was significantly associated with poorer disease-specific survival (p = 0.004) and relapse-free interval (p = 0.013). CONCLUSIONS Our results indicated that high TPX2 expression was associated with tumor progression and poor survival in gastric cancer.
Collapse
Affiliation(s)
- Chiharu Tomii
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Mikito Inokuchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan.
| | - Yoko Takagi
- Department of Surgical Specialties, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiaki Ishikawa
- Department of Surgical Specialties, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sho Otsuki
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Hiroyuki Uetake
- Department of Surgical Specialties, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|