1
|
Wei H, Zhao T, Liu X, Ding Q, Yang J, Bi X, Cheng Z, Ding C, Liu W. Mechanism of Action of Dihydroquercetin in the Prevention and Therapy of Experimental Liver Injury. Molecules 2024; 29:3537. [PMID: 39124941 PMCID: PMC11314611 DOI: 10.3390/molecules29153537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Liver disease is a global health problem that affects the well-being of tens of thousands of people. Dihydroquercetin (DHQ) is a flavonoid compound derived from various plants. Furthermore, DHQ has shown excellent activity in the prevention and treatment of liver injury, such as the inhibition of hepatocellular carcinoma cell proliferation after administration, the normalization of oxidative indices (like SOD, GSH) in this tissue, and the down-regulation of pro-inflammatory molecules (such as IL-6 and TNF-α). DHQ also exerts its therapeutic effects by affecting molecular pathways such as NF-κB and Nrf2. This paper discusses the latest research progress of DHQ in the treatment of various liver diseases (including viral liver injury, drug liver injury, alcoholic liver injury, non-alcoholic liver injury, fatty liver injury, and immune liver injury). It explores how to optimize the application of DHQ to improve its effectiveness in treating liver diseases, which is valuable for preparing potential therapeutic drugs for human liver diseases in conjunction with DHQ.
Collapse
Affiliation(s)
- Hewei Wei
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Ting Zhao
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Xinglong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| | - Junran Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Xiaoyu Bi
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Zhiqiang Cheng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (H.W.); (Q.D.); (J.Y.); (X.B.); (Z.C.)
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; (T.Z.); (X.L.)
| |
Collapse
|
2
|
Kim J, Beidler P, Wang H, Li C, Quassab A, Coles C, Drescher C, Carter D, Lieber A. Desmoglein-2 as a prognostic and biomarker in ovarian cancer. Cancer Biol Ther 2020; 21:1154-1162. [PMID: 33218274 PMCID: PMC7722792 DOI: 10.1080/15384047.2020.1843323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/31/2023] Open
Abstract
Greater than 80% of all cancer cases are carcinomas, formed by the malignant transformation of epithelial cells. One of the key features of epithelial tumors is the presence of intercellular junctions, which link cells to one another and act as barriers to the penetration of molecules. This study assessed the expression of desmoglein-2, an epithelial junction protein, as a prognostic and diagnostic biomarker for ovarian cancer. Ovarian cancer sections were stained for DSG2 and signal intensity was correlated to cancer type and grade. DSG2 immunohistochemistry signals and mRNA levels were analyzed in chemo-resistant and chemo-sensitive cases. Ovarian cancer patient serum levels of shed DSG2 were correlated to disease-free and overall survival. Primary ovarian cancer cells were used to study DSG2 levels as they changed in response to cisplatin treatment. DSG2 expression was found to be positively correlated with cancer grade. Ovarian cancer patients with high serum levels of shed DSG2 fared significantly worse in both progression-free survival (median survival of 16 months vs. 26 months, p = .0023) and general survival (median survival of 37 months vs. undefined, p < .0001). A subgroup of primary chemotherapy-resistant cases had stronger DSG2 IHC/Western signals and higher DSG2 mRNA levels. Furthermore, our in vitro studies indicate that non-cytotoxic doses of cisplatin can enhance DSG2 expression, which, in turn, can contribute to chemo-resistance. We suggest that DSG2 can be used in stratifying patients, deciding on where to use aggressive treatment strategies, predicting chemoresistance, and as a companion diagnostic for treatments targeting DSG2.
Collapse
Affiliation(s)
- Jiho Kim
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
- R&D Department, PAI Life Sciences Inc, Seattle, Washington, USA
| | - Peter Beidler
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Hongjie Wang
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chang Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Abdullah Quassab
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Cari Coles
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Charles Drescher
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Darrick Carter
- R&D Department, PAI Life Sciences Inc, Seattle, Washington, USA
- R&D Department, Onc Bio, Seattle, Washington, USA
| | - André Lieber
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
4
|
Rodriguez-Ramirez C, Nör JE. p53 and Cell Fate: Sensitizing Head and Neck Cancer Stem Cells to Chemotherapy. Crit Rev Oncog 2019; 23:173-187. [PMID: 30311573 DOI: 10.1615/critrevoncog.2018027353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Head and neck cancers are deadly diseases that are diagnosed annually in approximately half a million individuals worldwide. Growing evidence supporting a role for cancer stem cells (CSCs) in the pathobiology of head and neck cancers has led to increasing interest in identifying therapeutics to target these cells. Apart from the canonical tumor-suppressor functions of p53, emerging research supports a significant role for this protein in physiological stem cell and CSC maintenance and reprogramming. Therefore, p53 has become a promising target to sensitize head and neck CSCs to chemotherapy. In this review, we highlight the role of p53 in stem cell maintenance and discuss potential implications of targeting p53 to treat patients with head and neck cancers.
Collapse
Affiliation(s)
- Christie Rodriguez-Ramirez
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI; Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Muñoz-Galván S, Felipe-Abrio B, García-Carrasco M, Domínguez-Piñol J, Suarez-Martinez E, Verdugo-Sivianes EM, Espinosa-Sánchez A, Navas LE, Otero-Albiol D, Marin JJ, Jiménez-García MP, García-Heredia JM, Quiroga AG, Estevez-Garcia P, Carnero A. New markers for human ovarian cancer that link platinum resistance to the cancer stem cell phenotype and define new therapeutic combinations and diagnostic tools. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:234. [PMID: 31159852 PMCID: PMC6547556 DOI: 10.1186/s13046-019-1245-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022]
Abstract
Background Ovarian cancer is the leading cause of gynecologic cancer-related death, due in part to a late diagnosis and a high rate of recurrence. Primary and acquired platinum resistance is related to a low response probability to subsequent lines of treatment and to a poor survival. Therefore, a comprehensive understanding of the mechanisms that drive platinum resistance is urgently needed. Methods We used bioinformatics analysis of public databases and RT-qPCR to quantitate the relative gene expression profiles of ovarian tumors. Many of the dysregulated genes were cancer stem cell (CSC) factors, and we analyzed its relation to therapeutic resistance in human primary tumors. We also performed clustering and in vitro analyses of therapy cytotoxicity in tumorspheres. Results Using bioinformatics analysis, we identified transcriptional targets that are common endpoints of genetic alterations linked to platinum resistance in ovarian tumors. Most of these genes are grouped into 4 main clusters related to the CSC phenotype, including the DNA damage, Notch and C-KIT/MAPK/MEK pathways. The relative expression of these genes, either alone or in combination, is related to prognosis and provide a connection between platinum resistance and the CSC phenotype. However, the expression of the CSC-related markers was heterogeneous in the resistant tumors, most likely because there were different CSC pools. Furthermore, our in vitro results showed that the inhibition of the CSC-related targets lying at the intersection of the DNA damage, Notch and C-KIT/MAPK/MEK pathways sensitize CSC-enriched tumorspheres to platinum therapies, suggesting a new option for the treatment of patients with platinum-resistant ovarian cancer. Conclusions The current study presents a new approach to target the physiology of resistant ovarian tumor cells through the identification of core biomarkers. We hypothesize that the identified mutations confer platinum resistance by converging to activate a few pathways and to induce the expression of a few common, measurable and targetable essential genes. These pathways include the DNA damage, Notch and C-KIT/MAPK/MEK pathways. Finally, the combined inhibition of one of these pathways with platinum treatment increases the sensitivity of CSC-enriched tumorspheres to low doses of platinum, suggesting a new treatment for ovarian cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1245-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain.,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | - Blanca Felipe-Abrio
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain.,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | | | - Julia Domínguez-Piñol
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain
| | - Elisa Suarez-Martinez
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain.,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | - Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain
| | - Lola E Navas
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain
| | - Daniel Otero-Albiol
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain.,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | - Juan J Marin
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain.,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | - Manuel P Jiménez-García
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain.,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain
| | - Jose M García-Heredia
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain.,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain.,Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| | - Adoración G Quiroga
- Organic Chemistry Department, Autonomous University of Madrid, Madrid, Spain
| | - Purificacion Estevez-Garcia
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain.,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain.,Medical Oncology Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Campus Hospital Universitario Virgen del Rocío, Universidad de Sevilla-Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, Seville, Spain. .,CIBER de CANCER, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|