1
|
Kostrygin NE, Valyakis DA, Chumachenko DS, Polovinkin VV. Liver Transplant Beyond the Milan Criteria: Distant Metastases of Hepatocellular Carcinoma (Part II). INNOVATIVE MEDICINE OF KUBAN 2024:106-112. [DOI: 10.35401/2541-9897-2024-9-4-106-112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Liver transplant is one of the most effective ways to treat hepatocellular carcinoma (HCC). Thanks to the implementation of the Milan criteria, developed almost 30 years ago, 5-year survival rates for patients who underwent a transplant for HCC increased and reached the rates for patients with nontumor indications. Despite the emergence of alternative stratification systems, extrahepatic metastases remain a key contraindication to a liver transplant. Nevertheless, there have been reported cases of liver transplants in spite of the contraindication not only in times of diagnostic limitations but also in the 21st century.We have previously reported our own case of a patient who underwent a liver transplant in spite of pulmonary lesions, which postoperatively were found to be HCC metastases. In this part of the review, we discuss similar cases from the literature.If metastatic lesions are successfully treated, a related donor is available, and other modalities are seen as less preferable in terms of the disease prognosis, a liver transplant may be considered an appropriate way to prolong the patient’s life, although such approach should not be recommended for widespread use.
Collapse
Affiliation(s)
| | - D. A. Valyakis
- Kuban State Medical University; Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1
| | - D. S. Chumachenko
- Kuban State Medical University; Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1
| | - V. V. Polovinkin
- Kuban State Medical University; Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1
| |
Collapse
|
2
|
Zhao H, Sun M, Zhang Y, Kong W, Fan L, Wang K, Xu Q, Chen B, Dong J, Shi Y, Wang Z, Wang S, Zhuang X, Li Q, Lin F, Yao X, Zhang W, Kong C, Zhang R, Feng D, Zhao X. Connecting the Dots: The Cerebral Lymphatic System as a Bridge Between the Central Nervous System and Peripheral System in Health and Disease. Aging Dis 2024; 15:115-152. [PMID: 37307828 PMCID: PMC10796102 DOI: 10.14336/ad.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
As a recently discovered waste removal system in the brain, cerebral lymphatic system is thought to play an important role in regulating the homeostasis of the central nervous system. Currently, more and more attention is being focused on the cerebral lymphatic system. Further understanding of the structural and functional characteristics of cerebral lymphatic system is essential to better understand the pathogenesis of diseases and to explore therapeutic approaches. In this review, we summarize the structural components and functional characteristics of cerebral lymphatic system. More importantly, it is closely associated with peripheral system diseases in the gastrointestinal tract, liver, and kidney. However, there is still a gap in the study of the cerebral lymphatic system. However, we believe that it is a critical mediator of the interactions between the central nervous system and the peripheral system.
Collapse
Affiliation(s)
- Hongxiang Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Meiyan Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yue Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Wenwen Kong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lulu Fan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaifang Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Qing Xu
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Baiyan Chen
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Jianxin Dong
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Yanan Shi
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhengyan Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - ShiQi Wang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Xiaoli Zhuang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Qi Li
- Department of Anesthesiology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Feihong Lin
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Xinyu Yao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - WenBo Zhang
- Department of Neurosurgery, The Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Chang Kong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| | - Rui Zhang
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Dayun Feng
- Department of neurosurgery, Tangdu hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaoyong Zhao
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Anesthesiology, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China.
| |
Collapse
|
3
|
Xu L, Li C, Hua F, Liu X. The CXCL12/CXCR7 signalling axis promotes proliferation and metastasis in cervical cancer. Med Oncol 2021; 38:58. [DOI: 10.1007/s12032-021-01481-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
|
4
|
Effects of miRNA-140 on the Growth and Clinical Prognosis of SMMC-7721 Hepatocellular Carcinoma Cell Line. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6638915. [PMID: 33628799 PMCID: PMC7884124 DOI: 10.1155/2021/6638915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/27/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Background A growing number of studies have suggested that microRNAs exert an essential role in the development and occurrence of multiple tumours and act as crucial regulators in various biological processes. However, the expression and function of miRNA-140 in hepatocellular carcinoma (HCC) cells are not yet adequately identified and manifested. Methods The expression of miRNA-140 was determined in HCC tissues and adjacent nontumour tissues by quantitative real-time polymerase chain reaction (qRT-PCR). Kaplan-Meier survival analysis and Cox regression analysis were performed to explore the correlation between miRNA-140 expression level and the survival rate of patients with HCC. Additionally, overexpression experiments were conducted to investigate the biological role of miRNA-140 in HCC cells. Bioinformatics was used to predict the related target genes and pathways of miRNA-140. Results QRT-PCR results signified that the expression level of miRNA-140 in HCC was lower than that of adjacent normal tissues (P < 0.0001). Compared with the control group, the SMMC-7721 HCC cells in the miRNA-140 mimic group had a decrease in proliferation, migration, and invasion (P < 0.05), whereas those in the miRNA-140 inhibitor group had an increase in proliferation, migration, and invasion (P < 0.05). Cell cycle arrest occurred in the G0/1 phase. Prognosis analysis showed that the expression level of miRNA-140 was not related to the prognosis of HCC. Furthermore, the Kaplan-Meier test revealed that patients with lower miRNA-140 expression levels in liver cancer tissue had significantly shorter disease-free survival (DFS, P = 0.004) and overall survival (OS) times (P = 0.010) after hepatectomy. Cox regression analysis further indicated that miRNA-140 was an independent risk factor that may affect the DFS (P = 0.004) and OS times (P = 0.014) of patients after hepatectomy. Our results suggested that miRNA-140 might be a crucial regulator involved in the HCC progression and is thus considered a potential prognostic biomarker and therapeutic target for HCC.
Collapse
|
5
|
Karbownik A, Stanisławiak-Rudowicz J, Stachowiak A, Romański M, Grześkowiak E, Szałek E. The Influence of Paracetamol on the Penetration of Sorafenib and Sorafenib N-Oxide Through the Blood-Brain Barrier in Rats. Eur J Drug Metab Pharmacokinet 2020; 45:801-808. [PMID: 32776310 PMCID: PMC7677279 DOI: 10.1007/s13318-020-00639-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background and Objective Sorafenib is an oral, multikinase inhibitor with established single-agent activity in several tumor types. Sorafenib was moderately transported by P-glycoprotein (P-gp) and more efficiently by breast cancer resistance protein. The constitutive androstane receptor (CAR) is a ligand-activated transcription factor involved in P-gp regulation in the brain microvasculature. Paracetamol is a CAR activator. The purpose of this study was to investigate the effect of paracetamol on the brain uptake of sorafenib and sorafenib N-oxide. Methods The rats were assigned to two groups—rats receiving oral paracetamol 100 mg/kg and sorafenib 100 mg/kg (n = 42, ISR+PA) and rats receiving oral vehicle and sorafenib 100 mg/kg (n = 42, IISR). The sorafenib and sorafenib N-oxide concentrations in blood plasma and brain tissue were determined by a high-performance liquid chromatography method with ultraviolet detection. Brain-to-plasma partition coefficient (Kp) was calculated as a ratio of the area under the curve from zero to 24 h (AUC) in the brain and plasma. A drug targeting index (DTI) was estimated as the group ISR+PAKp to group IISRKp ratio. Results Pharmacokinetic analysis revealed increased brain exposure to sorafenib and sorafenib N-oxide after co-administration of paracetamol. The brain maximum concentration (Cmax) and the AUC of the parent drug in the ISR+PA group compared with the IISR group were greater by 49.5 and 77.8%, respectively, and the same parameters for the metabolite were higher by 51.4 and 50.9%. However, the Kp values of sorafenib and sorafenib N-oxide did not differ significantly between the two animal groups and the DTI values were close to 1. Conclusion Paracetamol increases exposure to sorafenib and sorafenib N-oxide in the brain, likely due to increased exposure in plasma.
Collapse
Affiliation(s)
- Agnieszka Karbownik
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861, Poznan, Poland.
| | - Joanna Stanisławiak-Rudowicz
- Department of Gynecological Oncology, University Hospital of Lord's Transfiguration, 82/84 Szamarzewskiego Str., 60-569, Poznan, Poland
| | - Anna Stachowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861, Poznan, Poland
| | - Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 6 Święcickiego Str., 60-781, Poznan, Poland
| | - Edmund Grześkowiak
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861, Poznan, Poland
| | - Edyta Szałek
- Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences, 14 Św. Marii Magdaleny Str., 61-861, Poznan, Poland
| |
Collapse
|
6
|
Liu Q, Shi H, Yang J, Jiang N. Long Non-Coding RNA NEAT1 Promoted Hepatocellular Carcinoma Cell Proliferation and Reduced Apoptosis Through the Regulation of Let-7b-IGF-1R Axis. Onco Targets Ther 2019; 12:10401-10413. [PMID: 31819522 PMCID: PMC6890520 DOI: 10.2147/ott.s217763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022] Open
Abstract
Background and aim Long non-coding RNA nuclear-enriched abundant transcript 1 (NEAT1) is abnormally expressed in various human malignancies, including hepatocellular carcinoma (HCC). Let-7b is a miRNA with the effect of a tumor suppressor gene, and its expression level in various tumor tissues is lower than that in normal tissues. Studies have found that IGF-1R can be abnormally activated in the process of hepatocyte deterioration, and the expression level of IGF-1R in HCC is significantly up-regulated. The aim of this study was to investigate the functional mechanism of NEAT1/let-7b-IGF-1R axis in HCC. Methods The expressions of NEAT1 and microRNA (miR)-let-7b in HCC tissues and cell lines were quantified by quantitative real-time PCR (qRT-PCR). The effect of NEAT1 on tumor growth was observed in a mice model of transplanted hepatoma. The effects of down-regulation or up-regulation of NEAT1 expression in HCC cell lines were analysed from the perspectives of cell viability and apoptosis. The binding sites of NEAT1 and miR-let-7b were predicted by biological software. The expression of the miR-let-7b target molecules IGF-1R was detected by Western blotting. Results The results showed that the expressions of NEAT1 were significantly increased, while the expressions of miR-let-7b were decreased in the HCC tissues and cell lines. Additionally, it was found that the expressions of NEAT1 and miR-let-7b showed a negative correlation in HCC tissues. The mouse model experiments confirmed that the interference with NEAT1 expression inhibited the tumor growth. Meanwhile, the cell viability of HepG2/Huh7 cell lines was significantly decreased via the downregulation of NEAT1, whereas the corresponding rates of apoptosis were significantly increased. It was further proven that there was a certain negative regulatory mechanism between NEAT1 and miR-1et-7b, which was related to the expression of IGF-1R. Conclusion The over-expression of NEAT1 could promote the proliferation of HCC cells by inhibiting the expression of the miR-let-7b regulated by IGF-1R.
Collapse
Affiliation(s)
- Qin Liu
- Department of Gastroenterology, Weihai Municipal Hospital, Weihai, People's Republic of China
| | - Hexian Shi
- Department of Hepatobiliary Surgery, Heze Municipal Hospital, Heze, People's Republic of China
| | - Jianbo Yang
- Department of Oral Medicine, Weihai Stomatological Hospital, Weihai, People's Republic of China
| | - Ning Jiang
- Department of General Surgery, Shandong Provincial Third Hospital, Jinan, People's Republic of China
| |
Collapse
|
7
|
Kamimura K. Identification of molecular transition of hepatocellular carcinoma: a novel method to predict the initiation of metastasis. Stem Cell Investig 2019; 6:5. [PMID: 30976602 DOI: 10.21037/sci.2019.02.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata City, Japan
| |
Collapse
|
8
|
Du B, Zhang P, Tan Z, Xu J. MiR-1202 suppresses hepatocellular carcinoma cells migration and invasion by targeting cyclin dependent kinase 14. Biomed Pharmacother 2017; 96:1246-1252. [PMID: 29217161 DOI: 10.1016/j.biopha.2017.11.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/30/2022] Open
Abstract
Currently, hepatocellular carcinoma (HCC) patients still have poor survival outcomes mainly due to the powerful mobility of HCC cells. Increasing evidences hint that abnormally expressed miRNAs are capable to modulate HCC cells invasion and migration. MiR-1202 has been proposed as a ponderable molecular tumor marker in a variety of tumors. Here, results from real-time PCR indicated the decreased expression of miR-1202 in HCC. Clinically, statistical analysis showed that miR-1202 under-expression was closely associated with metastasis-related clinicopathologic characteristics. In addition, 5-year overall survival (OS) and disease-free survival (DFS) rates of HCC patients with high miR-1202 expression were much better than that in low miR-1202 group. Functionally, gain- and loss-of -function studies were performed to investigate the roles of miR-1202. Intriguingly, Would healing assay and Transwell assays indicated that elevated miR-1202 weakened HCC cells migration and invasion abilities, while miR-1202 knockdown presented the contrary effects. Furthermore, cyclin dependent kinase 14 (CDK14) was identified as a downstream target of miR-1202 by bioinformatics analysis, Dual luciferase reporter assay, detection of CDK14 expression and Pearson correlation analysis. More importantly, rescue experiments demonstrated that CDK14 mediated miR-1202 to exert its anti-tumor effects, which further confirmed the above finding. Taken together, miR-1202 may act as a new biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Bo Du
- Department of Hepatobiliary Surgery, The People's Hospital of Kaizhou District, Chongqing, 405400, PR China
| | - Peng Zhang
- Department of Hepatobiliary Surgery, The People's Hospital of Kaizhou District, Chongqing, 405400, PR China.
| | - Zhiming Tan
- Department of Hepatobiliary Surgery, The People's Hospital of Kaizhou District, Chongqing, 405400, PR China
| | - Jifan Xu
- Department of Hepatobiliary Surgery, The People's Hospital of Kaizhou District, Chongqing, 405400, PR China
| |
Collapse
|
9
|
Mastroeni D, Nolz J, Sekar S, Delvaux E, Serrano G, Cuyugan L, Liang WS, Beach TG, Rogers J, Coleman PD. Laser-captured microglia in the Alzheimer's and Parkinson's brain reveal unique regional expression profiles and suggest a potential role for hepatitis B in the Alzheimer's brain. Neurobiol Aging 2017; 63:12-21. [PMID: 29207277 DOI: 10.1016/j.neurobiolaging.2017.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/22/2017] [Indexed: 01/24/2023]
Abstract
Expression array data from dozens of laboratories, including our own, show significant changes in expression of many genes in Alzheimer's disease (AD) patients compared with normal controls. These data typically rely on brain homogenates, and information about transcripts specific to microglia and other central nervous system (CNS) cell types, which far outnumber microglia-specific transcripts, is lost. We therefore used single-cell laser capture methods to assess the full range of microglia-specific expression changes that occur in different brain regions (substantia nigra and hippocampus CA1) and disease states (AD, Parkinson's disease, and normal controls). Two novel pathways, neuronal repair and viral processing were identified. Based on KEGG analysis (Kyoto Encyclopedia of Genes and Genomes, a collection of biological pathways), one of the most significant viruses was hepatitis B virus (HBV) (false discovery rate < 0.00000001). Immunohistochemical analysis using HBV-core antibody in HBV-positive control, amnestic mild cognitive impairment, and HBV-positive AD cases show increased HBV immunoreactivity as disease pathology increases. These results are the first, to our knowledge, to show regional differences in human microglia. In addition, these data reveal new functions for microglia and suggest a novel risk factor for AD.
Collapse
Affiliation(s)
- Diego Mastroeni
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Jennifer Nolz
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Shobana Sekar
- Translational Genomics Institute, Phoenix, Arizona, USA
| | - Elaine Delvaux
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Lori Cuyugan
- Translational Genomics Institute, Phoenix, Arizona, USA
| | | | | | | | - Paul D Coleman
- Biodesign, ASU-Banner Biodesign Neurodegenerative Disease Research Center, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
10
|
Fang M, Zheng WJ, Yao M, Dong ZZ, Yao DF. Novel specific markers for hepatocellular carcinoma: Perspective on clinical applications. Shijie Huaren Xiaohua Zazhi 2017; 25:865-873. [DOI: 10.11569/wcjd.v25.i10.865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Despite continuous global efforts aimed at HCC eradication and improvements in various treatment techniques, the prognosis of HCC remains very poor. How to monitor malignant transformation of hepatocytes or diagnose HCC at early stage is still a medical challenge. A growing understanding of the multiple pathogenic factors including hepatitis B virus or hepatitis C virus infection, lipid accumulation, aflatoxin B1 intake and so on suggests that hepatocarcinogenesis is a multistep process. A large number of oncogenes or tumor suppressor genes have been identified. Early screening of HCC patients has been reported to confer a survival benefit. Although serum alpha-fetoprotein (AFP) and hepatoma-specific AFP have been used as conventional tumor markers, they often show false-positive results and lack sufficient sensitivity and specificity. In order to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis evaluation. Recently, numerous studies have shown the clinical utility of novel blood-based biomarkers, such as circulating tumor cells, key signal molecules or specific proteins, long non-coding RNAs, and microRNAs. In this article, we will review some novel HCC-related biomarkers and discuss their future perspective on clinical applications.
Collapse
|