1
|
Li Q, Fu T, Wei N, Wang Q, Zhang X. Bmi-1 promotes the proliferation, migration and invasion, and inhibits cell apoptosis of human retinoblastoma cells via RKIP. Sci Rep 2024; 14:14544. [PMID: 38914697 PMCID: PMC11196667 DOI: 10.1038/s41598-024-65011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Retinoblastoma is one of the most common ocular malignancies in children. Bmi-1, a member of the Polycomb group family of transcriptional repressors, is expressed in a variety of tumors. The purpose of our study was to explore the role of Bmi-1 in retinoblastoma. RT-qPCR and western blot were used for calculating the mRNA and protein levels of Bmi-1 and RKIP. MTT, Wound healing and Transwell assays were performed to measure the proliferation, migration and invasion in retinoblastoma cells. Cell apoptosis was detected by flow cytometry. The volume and mass of transplanted tumors were detected in nude mice. Bmi-1 was over expressed, and RKIP was low expressed in retinoblastoma cells. Bmi-1 promoted cell proliferation, migration and invasion and suppressed cell apoptosis of Y79 and SO-RB50 cells. Downregulation of Bmi-1 and overexpression of RKIP inhibited cell proliferation, migration and invasion, and increased cell apoptosis. The functions of Bmi-1 knockdown on retinoblastoma cells were blocked by RKIP knockdown, but promoted by RKIP. Down-regulated Bmi-1 inhibited xenograft tumor growth, and RKIP exacerbated this inhibitory effect. Bmi-1 served as a potential therapeutic target for improving the efficacy of clinical treatment in retinoblastoma. All the findings revealed the functions of Bmi-1/RKIP axis in retinoblastoma tumorigenesis.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Te Fu
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Ning Wei
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Qiaoling Wang
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China
| | - Xin Zhang
- Department of Ophthalmology, The Second People's Hospital of Jinan, No. 148, Jingyi Road, Jinan, 250000, Shandong, China.
| |
Collapse
|
2
|
Zhou J, Liu C, Amornphimoltham P, Cheong SC, Gutkind JS, Chen Q, Wang Z. Mouse Models for Head and Neck Squamous Cell Carcinoma. J Dent Res 2024; 103:585-595. [PMID: 38722077 DOI: 10.1177/00220345241240997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The prognosis and survival rate of head and neck squamous cell carcinoma (HNSCC) have remained unchanged for years, and the pathogenesis of HNSCC is still not fully understood, necessitating further research. An ideal animal model that accurately replicates the complex microenvironment of HNSCC is urgently needed. Among all the animal models for preclinical cancer research, tumor-bearing mouse models are the best known and widely used due to their high similarity to humans. Currently, mouse models for HNSCC can be broadly categorized into chemical-induced models, genetically engineered mouse models (GEMMs), and transplanted mouse models, each with its distinct advantages and limitations. In chemical-induced models, the carcinogen spontaneously initiates tumor formation through a multistep process. The resemblance of this model to human carcinogenesis renders it an ideal preclinical platform for studying HNSCC initiation and progression from precancerous lesions. The major drawback is that these models are time-consuming and, like human cancer, unpredictable in terms of timing, location, and number of lesions. GEMMs involve transgenic and knockout mice with gene modifications, leading to malignant transformation within a tumor microenvironment that recapitulates tumorigenesis in vivo, including their interaction with the immune system. However, most HNSCC GEMMs exhibit low tumor incidence and limited prognostic significance when translated to clinical studies. Transplanted mouse models are the most widely used in cancer research due to their consistency, availability, and efficiency. Based on the donor and recipient species matching, transplanted mouse models can be divided into xenografts and syngeneic models. In the latter, transplanted cells and host are from the same strain, making syngeneic models relevant to study functional immune system. In this review, we provide a comprehensive summary of the characteristics, establishment methods, and potential applications of these different HNSCC mouse models, aiming to assist researchers in choosing suitable animal models for their research.
Collapse
Affiliation(s)
- J Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - C Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - P Amornphimoltham
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - S C Cheong
- Translational Cancer Biology, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - J S Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Q Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Z Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Baquero J, Tang XH, Ferrotta A, Zhang T, DiKun KM, Gudas LJ. The transcription factor BMI1 increases hypoxic signaling in oral cavity epithelia. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167161. [PMID: 38599260 PMCID: PMC11370312 DOI: 10.1016/j.bbadis.2024.167161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The tongue epithelium is maintained by a proliferative basal layer. This layer contains long-lived stem cells (SCs), which produce progeny cells that move up to the surface as they differentiate. B-lymphoma Mo-MLV insertion region 1 (BMI1), a protein in mammalian Polycomb Repressive Complex 1 (PRC1) and a biomarker of oral squamous cell carcinoma, is expressed in almost all basal epithelial SCs of the tongue, and single, Bmi1-labelled SCs give rise to cells in all epithelial layers. We previously developed a transgenic mouse model (KrTB) containing a doxycycline- (dox) controlled, Tet-responsive element system to selectively overexpress Bmi1 in the tongue basal epithelial SCs. Here, we used this model to assess BMI1 actions in tongue epithelia. Genome-wide transcriptomics revealed increased levels of transcripts involved in the cellular response to hypoxia in Bmi1-overexpressing (KrTB+DOX) oral epithelia even though these mice were not subjected to hypoxia conditions. Ectopic Bmi1 expression in tongue epithelia increased the levels of hypoxia inducible factor-1 alpha (HIF1α) and HIF1α targets linked to metabolic reprogramming during hypoxia. We used chromatin immunoprecipitation (ChIP) to demonstrate that Bmi1 associates with the promoters of HIF1A and HIF1A-activator RELA (p65) in tongue epithelia. We also detected increased SC proliferation and oxidative stress in Bmi1-overexpressing tongue epithelia. Finally, using a human oral keratinocyte line (OKF6-TERT1R), we showed that ectopic BMI1 overexpression decreases the oxygen consumption rate while increasing the extracellular acidification rate, indicative of elevated glycolysis. Thus, our data demonstrate that high BMI1 expression drives hypoxic signaling, including metabolic reprogramming, in normal oral cavity epithelia.
Collapse
Affiliation(s)
- Jorge Baquero
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Annalisa Ferrotta
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
| | - Tuo Zhang
- Weill Cornell Genomics Core Facility, Weill Cornell Medical College, New York, NY, USA
| | - Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Biomedical Sciences, New York, NY, USA.
| |
Collapse
|
4
|
Tasoulas J, Srivastava S, Xu X, Tarasova V, Maniakas A, Karreth FA, Amelio AL. Genetically engineered mouse models of head and neck cancers. Oncogene 2023; 42:2593-2609. [PMID: 37474617 PMCID: PMC10457205 DOI: 10.1038/s41388-023-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
The head and neck region is one of the anatomic sites commonly afflicted by cancer, with ~1.5 million new diagnoses reported worldwide in 2020 alone. Remarkable progress has been made in understanding the underlying disease mechanisms, personalizing care based on each tumor's individual molecular characteristics, and even therapeutically exploiting the inherent vulnerabilities of these neoplasms. In this regard, genetically engineered mouse models (GEMMs) have played an instrumental role. While progress in the development of GEMMs has been slower than in other major cancer types, several GEMMs are now available that recapitulate most of the heterogeneous characteristics of head and neck cancers such as the tumor microenvironment. Different approaches have been employed in GEMM development and implementation, though each can generally recapitulate only certain disease aspects. As a result, appropriate model selection is essential for addressing specific research questions. In this review, we present an overview of all currently available head and neck cancer GEMMs, encompassing models for head and neck squamous cell carcinoma, nasopharyngeal carcinoma, and salivary and thyroid gland carcinomas.
Collapse
Affiliation(s)
- Jason Tasoulas
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sonal Srivastava
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaonan Xu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Valentina Tarasova
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Antonio L Amelio
- Department of Otolaryngology-Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
5
|
Joshi P, Waghmare S. Molecular signaling in cancer stem cells of tongue squamous cell carcinoma: Therapeutic implications and challenges. World J Stem Cells 2023; 15:438-452. [PMID: 37342225 PMCID: PMC10277967 DOI: 10.4252/wjsc.v15.i5.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Abstract
Head and neck squamous cell carcinoma is the seventh most common cancer worldwide with high mortality rates. Amongst oral cavity cancers, tongue carcinoma is a very common and aggressive oral cavity carcinoma. Despite the implementation of a multimodality treatment regime including surgical intervention, chemo-radiation as well as targeted therapy, tongue carcinoma shows a poor overall 5-year survival pattern, which is attributed to therapy resistance and recurrence of the disease. The presence of a rare population, i.e., cancer stem cells (CSCs) within the tumor, are involved in therapy resistance, recurrence, and distant metastasis that results in poor survival patterns. Therapeutic agents targeting CSCs have been in clinical trials, although they are unable to reach into therapy stage which is due to their failure in trials. A more detailed understanding of the CSCs is essential for identifying efficient targets. Molecular signaling pathways, which are differentially regulated in the CSCs, are one of the promising targets to manipulate the CSCs that would provide an improved outcome. In this review, we summarize the current understanding of molecular signaling associated with the maintenance and regulation of CSCs in tongue squamous cell carcinoma in order to emphasize the need of the hour to get a deeper understanding to unravel novel targets.
Collapse
Affiliation(s)
- Priyanka Joshi
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| | - Sanjeev Waghmare
- Stem Cell Biology Group, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai 410210, India
| |
Collapse
|
6
|
Hong J, Hong A, Tu H, Wan Z, Deng Y, Deng C, Tao B, Yu Y, Zhou L. LncRNA CCAT1 facilitates the proliferation, invasion and migration of human laryngeal squamous cell carcinoma cells via the miR-218-5p/BMI1. PeerJ 2022; 10:e12961. [PMID: 35261819 PMCID: PMC8898548 DOI: 10.7717/peerj.12961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) are vital in the treatment of laryngeal squamous cell carcinoma (LSCC). This study estimated the mechanism of lncRNA CCAT1 (CCAT1) in LSCC cells. The expression of CCAT1 in the human laryngeal mucosal epithelial cells (HLCs) and LSCC cells (Hep-2 and TU177) was detected. CCK-8 and Transwell assays were used to evaluate the cell proliferative, migrative, and invasive abilities, respectively. The subcellular localization of CCAT1 was verified by RNA-FISH and cytoplasmic isolation assays. The targeted relationship among CCAT1, miR-218-5p, and BMI1 was verified by dual-luciferase assay. Expressions of miR-218-5p and BMI1 were detected by RT-qPCR. Our results depicted that CCAT1 was highly-expressed in Hep-2 and TU177 cells. Silencing CCAT1 inhibited the proliferation, migration, and invasion of Hep-2 and TU177 cells. Mechanically, CCAT1 regulated the BMI1 expression by competitively binding to miR-218-5p as a competing endogenous RNA (ceRNA), and thus facilitated the growth of Hep-2 and TU177 cells. Downregulation of miR-218-5p or upregulation of BMI1 inhibited the inhibitory effect of silencing CCAT1 on Hep-2 and TU177 cell proliferation, invasion, and migration. In conclusion, our study elicited that lncRNA CCAT1 facilitated the proliferation, migration, and invasion of Hep-2 and TU177 cells by sponging miR-218-5p and regulating the downstream BMI1.
Collapse
Affiliation(s)
- Jing Hong
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ali Hong
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Houshu Tu
- Nanchang Angel Maternity Hospital, Nanchang, China
| | - Zhichao Wan
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuqiao Deng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chengcheng Deng
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Bo Tao
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yanjin Yu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lanfei Zhou
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
7
|
Baquero J, Tang XH, Scognamiglio T, Gudas LJ. EZH2 Knockout in Oral Cavity Basal Epithelia Causes More Invasive Squamous Cell Carcinomas. Carcinogenesis 2021; 42:1485-1495. [PMID: 34614148 DOI: 10.1093/carcin/bgab091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/13/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022] Open
Abstract
Oral squamous cell carcinoma (oral SCC) is an aggressive disease and despite intensive treatments, 5-year survival rates for patients have remained low in the last 20 years. Enhancer of zeste homolog 2 (EZH2), part of polycomb repressive complex 2 (PRC2), is highly expressed in human oral SCC samples and cell lines and has been associated with greater epithelia-to-mesenchymal transition (EMT), invasion, and metastasis. Here we developed a tamoxifen-regulated, transgenic mouse line (KcEZH2) in which EZH2 is selectively knocked out (KO) in some tongue epithelial basal stem cells (SCs) in adult mice. EZH2 KO SCs do not show the H3K27me3 mark, as assessed by double-label immunofluorescence. We used this mouse line to assess EZH2 actions during oral tumorigenesis with our immunocompetent 4-nitroquinoline 1-oxide (4-NQO) model of oral SCC. We report that higher percentages of mice with invasive SCCs and high-grade neoplastic lesions are observed in mice containing EZH2 KO SCs (KcEZH2-2TΔ and KcEZH2-5TΔ mice). Moreover, EZH2 expression does not correlate with the expression of markers of invasive SCCs. Finally, EZH2 KO cells that are E-cadherin+ are present at invasion fronts infiltrating underlying muscle tissue. Our findings indicate that the knockout of EZH2 in basal SCs of tongue epithelia results in more aggressive carcinomas, and this should be considered when targeting EZH2 as a therapeutic strategy.
Collapse
Affiliation(s)
- Jorge Baquero
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
8
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|