1
|
Deland L, Keane S, Olsson Bontell T, Sjöberg Bexelius T, Gudinaviciene I, De La Cuesta E, De Luca F, Nilsson JA, Carén H, Mörse H, Abel F. A pilocytic astrocytoma with novel ATG16L1::NTRK2 fusion responsive to larotrectinib: a case report with genomic and functional analysis. Oncologist 2024:oyae254. [PMID: 39326005 DOI: 10.1093/oncolo/oyae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The outcome of pilocytic astrocytoma (PA) depends heavily on the success of surgery. In cases where surgery alone is not curative, genetic analysis can be used to identify treatment targets for precision medicine. Here, we report a pediatric PA case that underwent incomplete surgical resection due to the tumor location. Clinical routine analyses demonstrated that the tumor did not carry any BRAF alteration. After postoperative surveillance, according to the low-grade glioma (LGG) protocol, recurrent tumor progressions resulted in multiple chemotherapy regimens. Screening formalin-fixed paraffin-embedded tumor material using an open-ended RNA sequencing panel revealed a novel in-frame autophagy related 16 like 1-neurotrophic receptor tyrosine kinase 2 (ATG16L1::NTRK2) fusion gene. The NTRK2 rearrangement was subsequently confirmed by fluorescent in situ hybridization on tumor tissue sections. Functional validation was performed by in vitro transient transfection of HEK293 cells and showed the ATG16L1::TRKB fusion protein to activate both the mitogen-activated protein kinase pathway and the phosphoinositide 3-kinase oncogenic pathways through increased phosphorylation of extracellular signal-regulated kinase, AKT, and S6. As a result of the identification of the NTRK fusion, the patient was enrolled in a phase I/II clinical trial of the highly selective TRK inhibitor larotrectinib. The patient responded well without significant side effects, and 8 months after the start of treatment, the contrast-enhancing tumor lesions were no longer detectable, consistent with a complete response as per Response Assessment in Neuro-Oncology (RANO) criteria. Presently, after 22 months of treatment, the patient's complete remission is sustained. Our findings highlight the importance of screening for other oncogenic drivers in BRAF-negative LGGs since rare fusion genes may serve as targets for precision oncology therapy.
Collapse
Affiliation(s)
- Lily Deland
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simon Keane
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Sjöberg Bexelius
- Section for Pediatric Oncology, Highly Specialized Pediatric Pediatrics 1, Astrid Lindgren's Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Inga Gudinaviciene
- Department of Genetics and Pathology, Laboratory Medicine Region Skåne, Lund, Sweden
| | | | - Francesca De Luca
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Harry Perkins Institute of Medical Research, Perth, Australia
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helena Mörse
- Pediatric Cancer Center, Skåne University Hospital, Lund, Sweden
| | - Frida Abel
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Cipri S, Fabozzi F, Del Baldo G, Milano GM, Boccuto L, Carai A, Mastronuzzi A. Targeted therapy for pediatric central nervous system tumors harboring mutagenic tropomyosin receptor kinases. Front Oncol 2023; 13:1235794. [PMID: 38144536 PMCID: PMC10748602 DOI: 10.3389/fonc.2023.1235794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
The family of the neurotrophic tyrosine kinase receptor (NTRK) gene encodes for members of the tropomyosin receptor kinase (TRK) family. Rearrangements involving NTRK1/2/3 are rare oncogenic factors reported with variable frequencies in an extensive range of cancers in pediatrics and adult populations, although they are more common in the former than in the latter. The alterations in these genes are causative of the constitutive activation of TRKs that drive carcinogenesis. In 2017, first-generation TRK inhibitor (TRKi) larotrectinib was granted accelerated approval from the FDA, having demonstrated histologic-agnostic activity against NTRKs fusions tumors. Since this new era has begun, resistance to first-generation TRKi has been described and has opened the development of second-generation molecules, such as selitrectinib and repotrectinib. In this review, we provide a brief overview of the studies on NTRK alterations found in pediatric central nervous system tumors and first and second-generation TRKi useful in clinical practice.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
3
|
Knockdown of NCOR2 Inhibits Cell Proliferation via BDNF/TrkB/ERK in NF1-Derived MPNSTs. Cancers (Basel) 2022; 14:cancers14235798. [PMID: 36497280 PMCID: PMC9738545 DOI: 10.3390/cancers14235798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
(1) Background: malignant peripheral nerve sheath tumours (MPNSTs) are aggressive Schwann cell-derived sarcomas with dismal prognoses. Previous studies have shown that nuclear receptor corepressor 2 (NCOR2) plays a vital role in neurodevelopment and in various tumours. However, the impact of NCOR2 on the progression of MPNST remains unclear. (2) Methods: by GEO database, MPNST tissue microarray, and NF1-related tumour tissues and cell lines were used to explore NCOR2 expression level in the MPNSTs. The role and mechanism of NCOR2 in NF1-derived MPNSTs were explored by experiments in vivo and in vitro and by transcriptome high-throughput sequencing. (3) Results: NCOR2 expression is significantly elevated in NF1-derived MPNSTs and is associated with patient 10-year survival time. Knockdown of NCOR2 suppressed NF1-derived MPNST cell proliferation by blocking the cell cycle in the G0/G1 phase. Moreover, decreased NCOR2 expression could down-regulate MAPK signal activity through the BDNF/TrkB pathway. (4) Conclusions: our findings demonstrated that NCOR2 expression is significantly elevated in NF1-derived MPNSTs. NCOR2 knockdown can inhibit NF1-derived MPNST cell proliferation by weakened BDNF/TrkB/ERK signalling. Targeting NF1-derived MPNSTs with TrkB inhibitors, or in combination with ERK inhibitors, may be a novel therapeutic strategy for clinical trials.
Collapse
|
4
|
DELAND LILY, KEANE SIMON, OLSSON BONTELL THOMAS, FAGMAN HENRIK, SJÖGREN HELENE, LIND ANDERSE, CARÉN HELENA, TISELL MAGNUS, NILSSON JONASA, EJESKÄR KATARINA, SABEL MAGNUS, ABEL FRIDA. Novel TPR::ROS1 Fusion Gene Activates MAPK, PI3K and JAK/STAT Signaling in an Infant-type Pediatric Glioma. Cancer Genomics Proteomics 2022; 19:711-726. [PMID: 36316040 PMCID: PMC9620451 DOI: 10.21873/cgp.20354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/AIM Although fusion genes involving the proto-oncogene receptor tyrosine kinase ROS1 are rare in pediatric glioma, targeted therapies with small inhibitors are increasingly being approved for histology-agnostic fusion-positive solid tumors. PATIENT AND METHODS Here, we present a 16-month-old boy, with a brain tumor in the third ventricle. The patient underwent complete resection but relapsed two years after diagnosis and underwent a second operation. The tumor was initially classified as a low-grade glioma (WHO grade 2); however, methylation profiling suggested the newly WHO-recognized type: infant-type hemispheric glioma. To further refine the molecular background, and search for druggable targets, whole genome (WGS) and whole transcriptome (RNA-Seq) sequencing was performed. RESULTS Concomitant WGS and RNA-Seq analysis revealed several segmental gains and losses resulting in complex structural rearrangements and fusion genes. Among the top-candidates was a novel TPR::ROS1 fusion, for which only the 3' end of ROS1 was expressed in tumor tissue, indicating that wild type ROS1 is not normally expressed in the tissue of origin. Functional analysis by Western blot on protein lysates from transiently transfected HEK293 cells showed the TPR::ROS1 fusion gene to activate the MAPK-, PI3K- and JAK/STAT- pathways through increased phosphorylation of ERK, AKT, STAT and S6. The downstream pathway activation was also confirmed by immunohistochemistry on tumor tissue slides from the patient. CONCLUSION We have mapped the activated oncogenic pathways of a novel ROS1-fusion gene and broadened the knowledge of the newly recognized infant-type glioma subtype. The finding facilitates suitable targeted therapies for the patient in case of relapse.
Collapse
Affiliation(s)
- LILY DELAND
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - SIMON KEANE
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - THOMAS OLSSON BONTELL
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden,Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - HENRIK FAGMAN
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - HELENE SJÖGREN
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - ANDERS E. LIND
- Clinical Genomics Gothenburg, SciLife Labs, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - HELENA CARÉN
- Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - MAGNUS TISELL
- Department of Clinical Neuroscience and Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - JONAS A. NILSSON
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - KATARINA EJESKÄR
- Translational Medicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - MAGNUS SABEL
- Childhood Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden,Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - FRIDA ABEL
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden,Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Kobayashi Y, Oxnard GR, Cohen EF, Mahadevan NR, Alessi JV, Hung YP, Bertram AA, Heppner DE, Ribeiro MF, Sacardo KP, Saddi R, Macedo MP, Blasco RB, Li J, Kurppa KJ, Nguyen T, Voligny E, Ananda G, Chiarle R, Katz A, Tolstorukov MY, Sholl LM, Jänne PA. Genomic and biological study of fusion genes as resistance mechanisms to EGFR inhibitors. Nat Commun 2022; 13:5614. [PMID: 36153311 PMCID: PMC9509394 DOI: 10.1038/s41467-022-33210-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
The clinical significance of gene fusions detected by DNA-based next generation sequencing remains unclear as resistance mechanisms to EGFR tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer. By studying EGFR inhibitor-resistant patients treated with a combination of an EGFR inhibitor and a drug targeting the putative resistance-causing fusion oncogene, we identify patients who benefit and those who do not from this treatment approach. Through evaluation including RNA-seq of potential drug resistance-imparting fusion oncogenes in 504 patients with EGFR mutant lung cancer, we identify only a minority of them as functional, potentially capable of imparting EGFR inhibitor resistance. We further functionally validate fusion oncogenes in vitro using CRISPR-based editing of EGFR mutant cell lines and use these models to identify known and unknown drug resistance mechanisms to combination therapies. Collectively, our results partially reveal the complex nature of fusion oncogenes as potential drug resistance mechanisms and highlight approaches that can be undertaken to determine their functional significance.
Collapse
Affiliation(s)
- Yoshihisa Kobayashi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, 1040045, Japan
| | - Geoffrey R Oxnard
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elizabeth F Cohen
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Arrien A Bertram
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David E Heppner
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Mauricio F Ribeiro
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Karina P Sacardo
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Rodrigo Saddi
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Mariana P Macedo
- Department of Pathology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Rafael B Blasco
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jiaqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Kari J Kurppa
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, 20520, Finland
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Emma Voligny
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Guruprasad Ananda
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Artur Katz
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA.
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
NTRK2 gene fusions are uncommon in pilocytic astrocytoma. Mol Biol Rep 2022; 49:7567-7573. [PMID: 35713800 DOI: 10.1007/s11033-022-07567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Pilocytic astrocytoma is the most frequent pediatric glioma. Despite its overall good prognosis, complete surgical resection is sometimes unfeasible, especially for patients with deep-seated tumors. For these patients, the identification of targetable genetic alterations such as NTRK fusions, raised as a new hope for therapy. The presence of gene fusions involving NTRK2 has been rarely reported in pilocytic astrocytoma. The aim of the present study was to investigate the frequency of NTRK2 alterations in a series of Brazilian pilocytic astrocytomas. METHODS Sixty-nine pilocytic astrocytomas, previously characterized for BRAF and FGFR1 alterations were evaluated. The analysis of NTRK2 alterations was performed using a dual color break apart fluorescence in situ hybridization (FISH) assay. RESULTS NTRK2 fusions were successfully evaluated by FISH in 62 of the 69 cases. Neither evidence of NTRK2 gene rearrangements nor NTRK2 copy number alterations were found. CONCLUSIONS NTRK2 alterations are uncommon genetic events in pilocytic astrocytomas, regardless of patients' clinicopathological and molecular features.
Collapse
|
7
|
Lang SS, Kumar NK, Madsen P, Gajjar AA, Gajjar E, Resnick AC, Storm PB. Neurotrophic Tyrosine Receptor Kinase Fusion in Pediatric Central Nervous System Tumors. Cancer Genet 2022; 262-263:64-70. [DOI: 10.1016/j.cancergen.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
|
8
|
Grogan PT, Deming DA, Helgager J, Ruszkiewicz T, Baskaya MK, Howard SP, Robins HI. Entrectinib demonstrates prolonged efficacy in an adult case of radiation-refractory NTRK fusion glioblastoma. Neurooncol Adv 2022; 4:vdac046. [PMID: 35673607 PMCID: PMC9167633 DOI: 10.1093/noajnl/vdac046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Patrick T Grogan
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Dustin A Deming
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffrey Helgager
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Theresa Ruszkiewicz
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Mustafa K Baskaya
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin, USA
| | - Steven P Howard
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - H Ian Robins
- Department of Medicine, Division of Hematology, Medical Oncology, and Palliative Care, University of Wisconsin, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, Wisconsin, USA
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Neurology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|