1
|
Shao W, Feng Y, Huang J, Li T, Gao S, Yang Y, Li D, Yang Z, Yao Z. Interaction of ncRNAs and the PI3K/AKT/mTOR pathway: Implications for osteosarcoma. Open Life Sci 2024; 19:20220936. [PMID: 39119480 PMCID: PMC11306965 DOI: 10.1515/biol-2022-0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in children and adolescents, and is characterized by high heterogeneity, high malignancy, easy metastasis, and poor prognosis. Recurrence, metastasis, and multidrug resistance are the main problems that limit the therapeutic effect and prognosis of OS. PI3K/AKT/mTOR signaling pathway is often abnormally activated in OS tissues and cells, which promotes the rapid development, metastasis, and drug sensitivity of OS. Emerging evidence has revealed new insights into tumorigenesis through the interaction between the PI3K/AKT/mTOR pathway and non-coding RNAs (ncRNAs). Therefore, we reviewed the interactions between the PI3K/AKT/mTOR pathway and ncRNAs and their implication in OS. These interactions have the potential to serve as cancer biomarkers and therapeutic targets in clinical applications.
Collapse
Affiliation(s)
- Weilin Shao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Yan Feng
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Jin Huang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Tingyu Li
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shengguai Gao
- Clinical Oncology Institute, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yihao Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, Yunnan, 650118, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumours Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
- Department of Cancer Research Institute, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), No. 519 Kunzhou Road, Xishan District, Kunming, Yunnan, 650118, China
| |
Collapse
|
2
|
Mostafa SM, Wang L, Tian B, Graber J, Moore C. Transcriptomic analysis reveals regulation of adipogenesis via long non-coding RNA, alternative splicing, and alternative polyadenylation. Sci Rep 2024; 14:16964. [PMID: 39043790 PMCID: PMC11266407 DOI: 10.1038/s41598-024-67648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Obesity is characterized by dysregulated adipogenesis that leads to increased number and/or size of adipocytes. Understanding the molecular mechanisms governing adipogenesis is therefore key to designing therapeutic interventions against obesity. In our study, we analyzed 3'-end sequencing data that we generated from human preadipocytes and adipocytes, as well as previously published RNA-seq datasets, to elucidate mechanisms of regulation via long non-coding RNA (lncRNA), alternative splicing (AS) and alternative polyadenylation (APA). We discovered lncRNAs that have not been previously characterized but may be key regulators of white adipogenesis. We also detected 100 AS events and, using motif enrichment analysis, identified RNA binding proteins (RBPs) that could mediate exon skipping-the most prevalent AS event. In addition, we show that usage of alternative poly(A) sites in introns or 3'-UTRs of key adipogenesis genes leads to isoform diversity, which can have significant biological consequences on differentiation efficiency. We also identified RBPs that may modulate APA and defined how 3'-UTR APA can regulate gene expression through gain or loss of specific microRNA binding sites. Taken together, our bioinformatics-based analysis reveals potential therapeutic avenues for obesity through manipulation of lncRNA levels and the profile of mRNA isoforms via alternative splicing and polyadenylation.
Collapse
Affiliation(s)
- Salwa Mohd Mostafa
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Luyang Wang
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Bin Tian
- Gene Expression and Regulation Program, and Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Joel Graber
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME, 04609, USA
| | - Claire Moore
- Graduate School of Biomedical Sciences and Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
3
|
Chen C, Wang C, Li Y, Jiang S, Yu N, Zhou G. Prognosis and chemotherapy drug sensitivity in liver hepatocellular carcinoma through a disulfidptosis-related lncRNA signature. Sci Rep 2024; 14:7157. [PMID: 38531953 DOI: 10.1038/s41598-024-57954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/23/2024] [Indexed: 03/28/2024] Open
Abstract
Disulfidptosis, a new type of regulated cell death associated with the actin cytoskeleton, provides a new therapeutic tool for cancers. The direct relationship between disulfidptosis-related lncRNAs(DRLs) in liver hepatocellular carcinoma(HCC) remains unclear. We acquired transcriptomic data, corresponding clinical data, and tumor mutation data of HCC from the TCGA database. First of all, DRLs were determined through correlation analysis. Then, a prognostic model containing six DRLs was created by adopting univariate Cox regression, LASSO algorithm and multivariate Cox regression analysis. Based on the model, 424 HCC patients were divided into high- and low-risk groups. Next, we structured ROC curves and PCA through combining the model and clinical data. Enrichment analysis and immune infiltration analysis were adopted to further explore the relationship between the model and prognosis. In addition, we explored the relationship between the model and tumor mutation burden (TMB). There were significant differences between high- and low- risk groups, and patients in the high-risk group showed poor prognosis. Enrichment analysis suggested that metabolic progress was obviously different between the two groups. According to the analysis of immune infiltration, there were several differences in immune cells, function, and checkpoints. Patients with high-risk and high TMB demonstrated the least favorable prognosis. The two risk groups both manifested visiblly in chemotherapy drug sensitivity. To sum up, we set up a DRL-based signature and that may provide a predictable value for the prognosis and use of chemotherapy drugs for HCC patients.
Collapse
Affiliation(s)
- Chao Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yi Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Shanshan Jiang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ningjun Yu
- Department of Radiology, Sichuan Science Hospital, Mianyang, 621022, Sichuan, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
4
|
Zhu Y, Liu Z, Cao L, Fan G, Ji R, Zhang L, Daji S, Zhu H, Wang Y, Zhou G. FRS2 regulated by miR-429 and miR-206 promotes angiogenesis in osteosarcoma. Gene 2024; 898:148118. [PMID: 38159618 DOI: 10.1016/j.gene.2023.148118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
FRS2 has demonstrated oncogenic roles in various malignancies, including liposarcoma and giant cell tumor of bone. However, its role in osteosarcoma remains less understood, and the upstream regulatory molecules influencing FRS2 remain unclear. This study aims to explore the clinical implications and biological function of FRS2 in osteosarcoma, and the potential regulatory microRNAs (miRNAs) governing its expression. Our study indicated significant upregulation of FRS2 in osteosarcoma cells and tissues by Western blotting and immunohistochemical staining. Elevated FRS2 expression correlated positively with increased angiogenesis and poor prognosis, possibly serving as an independent prognostic indicator for osteosarcoma patients. Functional assays revealed that attenuating FRS2 in osteosarcoma cells could mitigate proliferation, migration, and angiogenesis of vascular endothelial cells. Further investigations revealed that miR-429 and miR-206 directly targeted FRS2, exerting a negative regulation on its expression. Furthermore, FRS2 played a role in repressing osteosarcoma advancement influenced by miR-429 or miR-206. In summary, FRS2, influenced by miR-429 and miR-206, emerges as a promising therapeutic candidate for antiangiogenic osteosarcoma treatments.
Collapse
Affiliation(s)
- Yan Zhu
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China; Jinling Hospital, Department of Orthopaedics, Nanjing Medical University, Nanjing 210002, China
| | - Ziying Liu
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Lili Cao
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Gentao Fan
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Ronghao Ji
- Jiangsu Cancer Hospital, Department of Pathology, Nanjing 210002, China
| | - Liming Zhang
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Suolang Daji
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Hao Zhu
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China
| | - Yicun Wang
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China; Jinling Hospital, Department of Orthopaedics, Nanjing Medical University, Nanjing 210002, China.
| | - Guangxin Zhou
- Jinling Hospital, Department of Orthopaedics, Nanjing University, Nanjing 210002, China; Wuxi Xishan NJU Institue of Applied Biotechnology, Wuxi 214101, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Yu S, Wang S, Xiong B, Peng C. Gut microbiota: key facilitator in metastasis of colorectal cancer. Front Oncol 2023; 13:1270991. [PMID: 38023192 PMCID: PMC10643165 DOI: 10.3389/fonc.2023.1270991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) ranks third in terms of incidence among all kinds of cancer. The main cause of death is metastasis. Recent studies have shown that the gut microbiota could facilitate cancer metastasis by promoting cancer cells proliferation, invasion, dissemination, and survival. Multiple mechanisms have been implicated, such as RNA-mediated targeting effects, activation of tumor signaling cascades, secretion of microbiota-derived functional substances, regulation of mRNA methylation, facilitated immune evasion, increased intravasation of cancer cells, and remodeling of tumor microenvironment (TME). The understanding of CRC metastasis was further deepened by the mechanisms mentioned above. In this review, the mechanisms by which the gut microbiota participates in the process of CRC metastasis were reviewed as followed based on recent studies.
Collapse
Affiliation(s)
- Siyi Yu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| | - Chunwei Peng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|