1
|
Ni CX, Xu JJ, Pang Y, Xu JJ. Treatment strategies targeting the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin pathway against triple-negative breast cancer. World J Clin Oncol 2025; 16:104623. [DOI: 10.5306/wjco.v16.i5.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 05/19/2025] Open
Abstract
Triple negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer with a poor prognosis. TNBC patients have limited treatment options beyond conventional chemotherapy, and they face significant challenges associated with disease recurrence and resistance to chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway plays a pivotal role in cell proliferation, growth, metabolism, and survival. Its aberrant activation is closely linked to the development and progression of TNBC, as well as treatment response and drug resistance. Currently, numerous targeted drugs specifically inhibiting this signaling pathway are being developed and undergoing clinical trials. These include inhibitors targeting PI3K, AKT, or mTOR individually, as well as dual-target or multi-target inhibitors simultaneously targeting different components of this pathway. Encouragingly, some inhibitors have demonstrated promising potential in clinical trials. This review delves into the therapeutic potential of the PI3K/AKT/mTOR signaling pathway for TNBC and explores prospects for drug discovery.
Collapse
Affiliation(s)
- Chun-Xiao Ni
- Department of Minimally Invasive Oncology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| | - Jia-Ju Xu
- Department of Pediatrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong Province, China
| | - Yu Pang
- Department of Pathology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| | - Jia-Ju Xu
- Department of Medical Oncology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| |
Collapse
|
2
|
Liu Y, Zhang H, Li X, He T, Zhang W, Ji C, Wang J. Molecular mechanisms and pathological implications of unconventional protein secretion in human disease: from cellular stress to therapeutic targeting. Mol Biol Rep 2025; 52:236. [PMID: 39955475 DOI: 10.1007/s11033-025-10316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Unconventional protein secretion (UcPS) encompasses diverse non-canonical cellular export mechanisms that operate independently of the classical secretory pathway, representing a crucial cellular response to various physiological and pathological conditions. This comprehensive review synthesizes current understanding of UcPS mechanisms, particularly focusing on their roles in disease pathogenesis and progression. Recent advances in proteomics and cellular biology have revealed that UcPS facilitates the secretion of various biomedically significant proteins, including inflammatory mediators, growth factors, and disease-associated proteins, through multiple pathways such as membrane translocation, secretory lysosomes, and membrane-bound organelles. Notably, dysregulation of UcPS mechanisms has been implicated in various pathological conditions, including chronic inflammation, neurodegenerative disorders, and malignant transformation. We critically evaluate the molecular machinery governing UcPS, its regulation under cellular stress, and its contribution to disease mechanisms. Furthermore, we examine emerging therapeutic strategies targeting UcPS pathways, highlighting both opportunities and challenges in developing novel interventional approaches.
Collapse
Affiliation(s)
- Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing, 100124, China.
| |
Collapse
|