1
|
Tihagam RD, Bhatnagar S. A multi-platform normalization method for meta-analysis of gene expression data. Methods 2023:S1046-2023(23)00110-X. [PMID: 37423473 DOI: 10.1016/j.ymeth.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
Transcriptomic profiling is a mainstay of translational cancer research and is often used to identify cancer subtypes, stratify responders vs. non-responders patients, predict survival, and identify potential targets for therapeutic intervention. Analysis of gene expression data gathered by RNA sequencing (RNA-seq) and microarray is generally the first step in identifying and characterizing cancer-associated molecular determinants. The methodological advancements and reduced costs associated with transcriptomic profiling have increased the number of publicly available gene expression profiles for cancer subtypes. Data integration from multiple datasets is routinely done to increase the number of samples, improve statistical power, and provide better insight into the heterogeneity of the biological determinant. However, utilizing raw data from multiple platforms, species, and sources introduces systematic variations due to noise, batch effects, and biases. As such, the integrated data is mathematically adjusted through normalization, which allows direct comparison of expression measures among studies while minimizing technical and systemic variations. This study applied meta-analysis to multiple independent Affymetrix microarray and Illumina RNA-seq datasets available through the Gene Expression Omnibus (GEO) and The Cancer Gene Atlas (TCGA). We have previously identified a tripartite motif containing 37 (TRIM37), a breast cancer oncogene, that drives tumorigenesis and metastasis in triple-negative breast cancer. In this article, we adapted and assessed the validity of Stouffer's z-score normalization method to interrogate TRIM37 expression across different cancer types using multiple large-scale datasets.
Collapse
Affiliation(s)
- Rachisan Djiake Tihagam
- Department of Medical Microbiology and Immunology, The University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Sanchita Bhatnagar
- Department of Medical Microbiology and Immunology, The University of California Davis School of Medicine, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Long non-coding RNA TMPO-AS1 facilitates chemoresistance and invasion in breast cancer by modulating the miR-1179/TRIM37 axis. Oncol Lett 2021; 22:500. [PMID: 33981362 PMCID: PMC8108256 DOI: 10.3892/ol.2021.12761] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer has become the most common female tumor in the world. Although great progress has been made in the past decade, the treatment of advanced breast cancer remains unsatisfactory. An increasing number of reports have indicated that long non-coding RNAs (lncRNAs) have a pivotal role in chemoresistance as potential oncogenes in numerous types of cancer. However, the precise mechanisms underlying the action of lncRNAs in breast cancer resistance to chemotherapy have yet to be fully elucidated. In the present study, the function and molecular mechanisms of the lncRNA TMPO-antisense RNA 1 (AS1) in terms of its resistance to docetaxel (DOC) were explored in the MDA-MB-231 and MCF7 breast cancer cell lines. The results obtained suggested that TMPO-AS1 was markedly upregulated in DOC-resistant breast cancer cells compared with the sensitive breast cancer cells. Functionally, TMPO-AS1-knockdown sensitized MDA-231/DOC and MCF-7/DOC cells to DOC and suppressed cell invasion, with increased rates of DOC-induced apoptosis. Mechanistically, TMPO-AS1-downregulation induced DOC-sensitivity in breast cancer cells via depleting tripartite motif-containing protein 37 (TRIM37) by sponging microRNA (miR)-1179. Taken together, the present study has revealed the existence of a novel TMPO-AS1/miR-1179/TRIM37 molecular axis conferring DOC resistance of breast cancer cells, thereby suggesting a promising novel therapeutic target for breast cancer.
Collapse
|
4
|
Przanowski P, Lou S, Tihagam RD, Mondal T, Conlan C, Shivange G, Saltani I, Singh C, Xing K, Morris BB, Mayo MW, Teixeira L, Lehmann-Che J, Tushir-Singh J, Bhatnagar S. Oncogenic TRIM37 Links Chemoresistance and Metastatic Fate in Triple-Negative Breast Cancer. Cancer Res 2020; 80:4791-4804. [PMID: 32855208 DOI: 10.1158/0008-5472.can-20-1459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
The majority of clinical deaths in patients with triple-negative breast cancer (TNBC) are due to chemoresistance and aggressive metastases, with high prevalence in younger women of African ethnicity. Although tumorigenic drivers are numerous and varied, the drivers of metastatic transition remain largely unknown. Here, we uncovered a molecular dependence of TNBC tumors on the TRIM37 network, which enables tumor cells to resist chemotherapeutic as well as metastatic stress. TRIM37-directed histone H2A monoubiquitination enforces changes in DNA repair that rendered TP53-mutant TNBC cells resistant to chemotherapy. Chemotherapeutic drugs triggered a positive feedback loop via ATM/E2F1/STAT signaling, amplifying the TRIM37 network in chemoresistant cancer cells. High expression of TRIM37 induced transcriptomic changes characteristic of a metastatic phenotype, and inhibition of TRIM37 substantially reduced the in vivo propensity of TNBC cells. Selective delivery of TRIM37-specific antisense oligonucleotides using antifolate receptor 1-conjugated nanoparticles in combination with chemotherapy suppressed lung metastasis in spontaneous metastatic murine models. Collectively, these findings establish TRIM37 as a clinically relevant target with opportunities for therapeutic intervention. SIGNIFICANCE: TRIM37 drives aggressive TNBC biology by promoting resistance to chemotherapy and inducing a prometastatic transcriptional program; inhibition of TRIM37 increases chemotherapy efficacy and reduces metastasis risk in patients with TNBC.
Collapse
Affiliation(s)
- Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Song Lou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rachisan Djiake Tihagam
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Tanmoy Mondal
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Caroline Conlan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gururaj Shivange
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ilyas Saltani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Chandrajeet Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kun Xing
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Benjamin B Morris
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Luis Teixeira
- Breast Disease Unit, AP-HP, Hospital Saint Louis, Paris, France.,University of Paris, INSERM U976, HIPI, IRSL-Saint Louis, Paris, France
| | - Jacqueline Lehmann-Che
- University of Paris, INSERM U976, HIPI, IRSL-Saint Louis, Paris, France.,Molecular Oncology Unit, AP-HP Hospital Saint Louis, Paris, France
| | - Jogender Tushir-Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia. .,UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia. .,UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
5
|
Brigant B, Metzinger-Le Meuth V, Rochette J, Metzinger L. TRIMming down to TRIM37: Relevance to Inflammation, Cardiovascular Disorders, and Cancer in MULIBREY Nanism. Int J Mol Sci 2018; 20:ijms20010067. [PMID: 30586926 PMCID: PMC6337287 DOI: 10.3390/ijms20010067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
TRIpartite motif (TRIM) proteins are part of the largest subfamilies of E3 ligases that mediate the transfer of ubiquitin to substrate target proteins. In this review, we focus on TRIM37 in the normal cell and in pathological conditions, with an emphasis on the MULIBREY (MUscle-LIver-BRain-EYe) genetic disorder caused by TRIM37 mutations. TRIM37 is characterized by the presence of a RING domain, B-box motifs, and a coiled-coil region, and its C-terminal part includes the MATH domain specific to TRIM37. MULIBREY nanism is a rare autosomal recessive caused by TRIM37 mutations and characterized by severe pre- and postnatal growth failure. Constrictive pericarditis is the most serious anomaly of the disease and is present in about 20% of patients. The patients have a deregulation of glucose and lipid metabolism, including type 2 diabetes, fatty liver, and hypertension. Puzzlingly, MULIBREY patients, deficient for TRIM37, are plagued with numerous tumors. Among non-MULIBREY patients affected by cancer, a wide variety of cancers are associated with an overexpression of TRIM37. This suggests that normal cells need an optimal equilibrium in TRIM37 expression. Finding a way to keep that balance could lead to potential innovative drugs for MULIBREY nanism, including heart condition and carcinogenesis treatment.
Collapse
Affiliation(s)
- Benjamin Brigant
- HEMATIM, EA4666, CURS, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054 Amiens, France.
| | - Valérie Metzinger-Le Meuth
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13-Sorbonne Paris Cité, 93017 Bobigny CEDEX, France.
| | - Jacques Rochette
- HEMATIM, EA4666, CURS, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054 Amiens, France.
| | - Laurent Metzinger
- HEMATIM, EA4666, CURS, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054 Amiens, France.
| |
Collapse
|
6
|
Ding Y, Lu Y, Xie X, Sheng B, Wang Z. Silencing TRIM37 inhibits the proliferation and migration of non-small cell lung cancer cells. RSC Adv 2018; 8:36852-36857. [PMID: 35558931 PMCID: PMC9089310 DOI: 10.1039/c8ra06391e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
Tripartite motif containing 37 (TRIM37), a member of the tripartite motif (TRIM) family, has been involved in the development and progression of several tumors. However, its role in non-small cell lung cancer (NSCLC) is still unclear. Therefore, the aim of this study was to investigate the expression pattern and role of TRIM37 in NSCLC. Our results showed that TRIM37 was highly expressed in human NSCLC cell lines. Knockdown of TRIM37 obviously inhibited the proliferation in vitro and xenografted tumor growth in vivo. Furthermore, knockdown of TRIM37 suppressed NSCLC cell migration and invasion by inhibiting the epithelial–mesenchymal transition (EMT) phenotype. Lastly, knockdown of TRIM37 greatly down-regulated the protein expression levels of β-catenin, cyclinD1 and c-myc in A549 cells. In conclusion, the present study revealed that TRIM37 plays an important role in the development and progression of NSCLC. Thus, TRIM37 may act a potential therapeutic target for treating NSCLC. Tripartite motif containing 37 (TRIM37), a member of the tripartite motif (TRIM) family, has been involved in the development and progression of several tumors.![]()
Collapse
Affiliation(s)
- Yi Ding
- Department of Thoracic Surgery
- Shanghai Pudong New District People's Hospital
- Shanghai
- China
| | - Yi Lu
- Department of Thoracic Surgery
- Shanghai Pudong New District People's Hospital
- Shanghai
- China
| | - Xinjie Xie
- Department of Thoracic Surgery
- Shanghai Pudong New District People's Hospital
- Shanghai
- China
| | - Bo Sheng
- Department of Thoracic Surgery
- Shanghai Pudong New District People's Hospital
- Shanghai
- China
| | - Zuopei Wang
- Department of Thoracic Surgery
- Shanghai Pudong New District People's Hospital
- Shanghai
- China
| |
Collapse
|
7
|
Tushir-Singh J, Bhatnagar S. In Vitro Assay to Study Histone Ubiquitination During Transcriptional Regulation. Methods Mol Biol 2017; 1507:235-244. [PMID: 27832544 DOI: 10.1007/978-1-4939-6518-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In mammals, gene expression is largely controlled at the transcriptional level. In response to environmental or intrinsic signaling, gene expression is often fine-tuned by epigenetic modifications, including DNA methylation and histone modifications. One such histone modification is ubiquitination that predominately occurs in mono-ubiquitinated forms on histone H2A and H2B. We recently identified and characterized a novel E3 ligase called TRIM37 that ubiquitinates H2A. This study highlights the consequence of aberrant histone ubiquitination at the promoters of tumor suppressor genes in breast cancer. Regulatory mechanism by which TRIM37 and other auxiliary proteins are involved in the initiation and progression of breast cancer is of utmost importance toward generating effective therapeutics. Here, we describe a detailed step-by-step process of carrying out in vitro ubiquitination assay using purified histone proteins or reconstituted nucleosomes and affinity-purified recombinant E3 ligase like TRIM37. These experimental procedures are largely based on our studies in mammalian cells and will be a useful tool to identify substrate for E3 ubiquitin ligase as well as characterizing new E3 ligases.
Collapse
Affiliation(s)
- Jogender Tushir-Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|